Functional uncoupling between Ca2+ release and afterhyperpolarization in mutant hippocampal neurons lacking junctophilins

Shigeki Morishigea, Miyuki Nishia, Shiho Konnaia, Masayuki Sakamotob, Takashi Miyanaria, Haruki Maruyamaa, Shin-ya Satoha, Masahiro Watanabea, Masakazu Komaic, Hitomi Yamac, Kohji Fukusimac, and Hiroshi Takahashia,\daggera

aDepartment of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
bDepartment of Anatomy, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
cDepartment of Neurosurgery, National Center for Global Health and Medicine, Tokyo, Japan.

Received 4 October 2006; accepted 20 November 2006.

Abstract

Junctional membrane complexes (JMCs), composed of the electrically active (active) and nonactive (inactive) portions of the membrane and endoplasmic reticulum (ER), are thought to be a structural platform for channel clustering. Junc- tophilins (JPNs) contribute to JMC formation by interacting with the ER passive membrane to maintain active channels. In this article, we report that mutant JPN double-knockout (JPN-/-) mice lacking both JPN subtypes exhibit an irregular baseline spike and impaired memory. Electrophysiological experiments indicated that the channels responsible for afterhyperpolarization in hippocampal neurons were small conductance Ca2+ release (SKCa) channels. These results show that JPN double-knockout mice exhibit characteristic electrophysiological and behavioral defects, similar to those of a knockdown of JPNs. Thus, JPNs are essential for maintaining the normal electrophysiology of hippocampal neurons and for memory formation.

Introduction

Junctional membrane complexes (JMCs), composed of the electrically active (active) and nonactive (inactive) portions of the membrane, are thought to be a structural platform for channel clustering. Junc- tophilins (JPNs) contribute to JMC formation by interacting with the ER passive membrane to maintain active channels. In hippocampal neurons, JPNs are necessary for maintaining normal electrophysiology and for memory formation, but the mechanism underlying this requirement is unclear. In this study, we report that mutant JPN double-knockout (JPN-/-) mice lacking both JPN subtypes exhibit an irregular baseline spike and impaired memory. Electrophysiological experiments indicated that the channels responsible for afterhyperpolarization in hippocampal neurons were small conductance Ca2+ release (SKCa) channels. These results show that JPN double-knockout mice exhibit characteristic electrophysiological and behavioral defects, similar to those of a knockdown of JPNs. Thus, JPNs are essential for maintaining the normal electrophysiology of hippocampal neurons and for memory formation.