紫外線照射により不活化したワクシニアウイルスの免疫能

長野泰一 および 小島保彦 による

1. 不活化した皮膚ワクチンの【ウイルス】阻害効果 — 【4】われわれが以前に示した様に、接種後3日目に調製した皮膚ワクチンは、同じ感染単位を含む睾丸ワクチンより低い【ウイルス】阻害効果を有していた。

【5】しかし、接種後5日目に皮膚ワクチンを調製すると、その【ウイルス】阻害効果は、3日目に調製したワクチン製剤より強かったのでに対して、そのウイルス毒性は3日目の【ワクチン】製剤のそれと同じだった。【6】これらの結果は、感染組織の中に、1ないし数つかの、ウイルス毒性はないが、【ウイルス】感染を阻害する因子があることを示唆していた。

2. 【ウイルス】阻害効果に対する【超】遠心分離の効果 — 【7】完全ウイルスが唯一の【ウイルス】阻害因子であるかどうかを決定するために、われわれは皮膚ワクチンを6,000 rpmまたは35,000 rpmで、30分から60分間遠心した。

<table>
<thead>
<tr>
<th>試料</th>
<th>【ウイルス】毒性</th>
<th>【UV】照射時間、分</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>皮膚ワクチン原液</td>
<td>10^6</td>
<td>10</td>
</tr>
<tr>
<td>【遠心】上清</td>
<td>10^4</td>
<td>10</td>
</tr>
<tr>
<td>沈殿（【ウイルス】)</td>
<td>10^6</td>
<td>10</td>
</tr>
</tbody>
</table>

【表】6,000 rpmで30分間遠心した皮膚ワクチンの【ウイルス】阻害効果（最大有効希釈）
[8] 6休心沈殿は、リン酸液に浸して新たに調製した懸濁液と、0.2 ml 当り 10⁶ から 10⁷ の感染単位を有していた。9この部分精製したウイルスを、ウイルスを完全に不活化する最小時間である 2 分間、UV照射すると、6休心しなかったウイルス懸濁液と同じウイルス阻害効果を有していた。10しかしながら、6分間レ線照射すると、ウイルス阻害効果は完全に除去された。

116休心上清は、0.2 ml 当り 10⁴ から 10⁸ の感染単位を含んでいるに過ぎなかった。そのように弱いウイルス毒性にもかかわらず、上清はUV照射の後、ウイルス懸濁原液と等量のウイルス阻害効果を示した。12しかし、上清を過剰に 10分間もレ線照射してもウイルス阻害効果を除去しなかった。

13われわれはそこで、ウイルス懸濁原液が、感染性ウイルスの他に、感染はしないがウイルス阻害効果をもたらす因子を含むのか、あるいは、ウイルスを過剰なレ線照射の有害な作用から防御する成分があるのや、と自問した。14この点を明らかにするために、われわれは、はじめにウイルス懸濁液を過剰にUV照射し、それから6休心した。15ウイルス阻害実験をすると、その6休心上清はウイルス懸濁原液と同等に効果的であることが分かったのに対して、沈殿はほとんど効果的でなかった。16ウイルス懸濁液は、感染はしないがウイルス阻害活性を有する因子を含むこと、その因子はUV照射に対して、完全ウイルス粒子よりもはるかに耐性であるとする結果が得られた。

3．予めワクチン製剤を投与したマウスによるウイルス中和抗体の産生 —

17上で述べたウイルス阻害効果は、ウクシニアウイルス懸濁液の免疫能であるか？18どの動物を、ワクチン製剤の免疫能を正確に決定するために選ぶべきか？19予備的試験によって、ウサギやモルモットと比べて、マウスが自然に免疫になることは極めて稀であることが分かった。

20マウス6匹の群に、ワクチン製剤の希釈液を腹腔内に一回投与した。213週か5週間後で、それらの動物は健康だった。22各動物群の血清を集め、5分の1に希釈した。23中和反応は、以前記載した技法（2*）によって実施された。24われわれはこうして、次の事実を確認した：a）25皮膚ワクチン、または睾丸ワクチンは、部分精製してもしなくても、接種が少なくとも 10⁶ 単位の感染性ウイルスを含む限り、マウスに抗体産生を惹起した。2610⁵ 単位の感染性ウイルスの感染では、抗体の出現を引き起こすことは極めて困難だった。2710⁴ 単位のウイルス感染では、抗体産生を惹起できなかった。28）紫外線照射は皮膚ワクチンを、その免疫能を弱める事なく完全に不活化することができた。

4．皮膚ワクチンの遺伝上清の免疫能 —

29皮膚ワクチンの遺伝上清は、第2項の実験で示したように、ごく僅かのウイルスしか含まないにもかかわらず、最初のウイルス懸濁液と同じウイルス阻害効果を示した。3010⁴ 単位の感染性ウイルスしか含まれない遺伝上清でマウスを免疫することを試みた。31結果は陽性だった。32これは、上清中に感染力はないが免疫能を与える成分があることの証拠かもしれない。33この観察は、中村と彼の共同研究者達の仕事のいくつかを確認するものである（3*）。

- 2 -
考察 — [34] 現時点では、[UV] 照射したウイルスによる皮膚感染の阻害が、免疫現象であるのか、あるいは、いわゆる干渉現象であるのかは決められない。[35] しかしながら、さまざまな組織からさまざまな処理を施して得られたワクチン製剤の[ウイルス] 阻害効果と免疫能との関係を調べると、[ウイルス] 阻害効果が大きいと、免疫能もまた大きくなり、前者が小さいか否かであると、後者は、それに並行して、小さいか否かであった。

[36] 実用上の観点から、不活化ウイルスが高い免疫原性を保持していることは重要である。なぜなら、天然痘に対する不活化ワクチンを調製することができてあることを示唆しているからである。

要約 — [1*] [37] マウスはワクチン製剤の抗原力を決定するのに適している。[38] この動物では、紫外線で不活化したウイルスの最少免疫[誘発] 量は活性ウイルスのそれと等しかった。

[2*] [39]ワクチンのウイルスで感染した組織は、感染はしないが、ウサギにおいて皮膚感染を阻害し、マウスに中和抗体の産生を惹起する性質を与える成分を含む。[40] それらの因子は 35,000 rpm、1 時間の遠心でも沈殿しない。

（伝染病研究所、東京）

文献

[訳注 1] 原著では著者の名前(first names) はイニシャルのみ。
[訳注 2] 各文章の頭に通し番号[1〜40]を付けた。
[訳注 3] 理解を助けるために補ったことばを[]で示した。
[訳注 4] 「阻害」は「抑制」と言い換えてもよい。ここでは「阻害」のみを用いた。
[訳注 5] 「因子」や「成分」は、原文では複数形であることに留意されたい。

[渡部好彦 訳訳：23/6/2004]

[無断配信および無断転載を禁止します。]