
2018. 8. 2 平成 30 年度前期学部試験問題

問 1 (誤りの書き出しは省略) (1) F26BP (2) HDL (3) メバロン酸 (4) \bigcirc (5) 基質レベルのリン酸化 (6) グルコース 6-ホスファターゼ (7) \bigcirc (8) メチル末端 (9) アラキドン酸 (10) インスリン (11) ジヒドロ葉酸レダクターゼ (12) アラニン (13) プリンヌクレオチド (14) AMP (15) ATP 依存性 (16) グルタミン酸 (17) 合成 (18) 不活性化 (or 低い)

問2

問3 (1) 肝細胞膜に存在する主要な<u>グルコース輸送体</u>の GLUT2 は受動輸送体であり、肝細胞内外のグルコース 濃度を平衡化するように機能するので、血中グルコース濃度が高い時にはグルコースを細胞内に取り込み、血中 グルコース濃度が低い時には細胞外へグルコースを放出する。肝細胞のサイトゾルに存在するヘキソキナーゼの アイソザイムの一種であるヘキソキナーゼ IV の \underline{K}_n 値は約 6 mM であり、血中グルコース濃度に平均値に近い。酵素活性は、反応速度が最大反応速度の 2 分の 1 となる \underline{K}_n 値の前後の基質濃度で変化しやすいので、ヘキソキナーゼ IV は GLUT2 によって伝えられた血中グルコース濃度の変化に応じて活性を変化させることができる。

(2) <u>DNA</u> 合成の原料の一つであるチミジル酸(dTMP)は、チミジル酸シンターゼが触媒するデオキシウリジル酸(dUMP)の<u>メチル化</u>によって生成する。5-FU(正確には5-FU に由来する5-FdUMP)は、dUMP のかわりにチミジル酸シンターゼに取り込まれることによって、dTMP の生成を抑制する。がん細胞のように増殖の速い細胞では DNA合成が活発に行なわれることから、5-FU はその原料となる dTMP の供給を絶つことによって抗がん剤として作用することができる。しかし、5-FU は<u>毛母細胞</u>のような増殖の速い正常細胞の DNA 合成も抑えてしまうので、副作用として脱毛が起こる。

(3) <u>ミトコンドリアマトリックス</u>内で起こるクエン酸回路に由来する NADH は、マトリックス側から複合体 I に電子 (2e⁻) を渡す。その後、この電子が<u>コビキノン</u> (Q)、複合体 III、シトクロム c、複合体 IV を介して伝達され、最終的に 0_2 に渡されて H_2 0 が生成する。その間に、複合体 I で $4H^+$ 、複合体 III で $4H^+$ 、複合体 IV で $2H^+$ 、合計で $10H^+$ がマトリックスから膜間腔へと排出される。一方、解糖による NADH 生成はサイトゾルで起こり、NADH はミトコンドリア内膜を通過できないので、複合体 I に電子を渡すことはできない。 骨格筋や脳では、この NADH 由来の電子は、グリセロール 3-リン酸シャトル機構を介して、ミトコンドリア内膜の膜間腔側に存在するグリセロール 3-リン酸デヒドロゲナーゼによって <u>FAD</u>を FADH₂に変換する反応に用いられる。この FADH₂に由来する電子は、複合体 I を経ることなしに Q に渡される。したがって、複合体 IV で 0_2 に電子を渡すまでに $6H^+$ が排出される。 <u>ATP シンターゼ</u>による 1 分子の ATP の生成には約 $4H^+$ が必要なので、クエン酸回路由来の NADH は約 2. 5ATP に 解糖由来の NADH は約 1. 5ATP に相当する。

問4 (がん細胞の増殖に比べて毛細血管の新生がおいつかず、酸素供給が十分ではなく酸化的リン酸化が進行しにくいので、)がん細胞では主に解糖に依存して ATP を生成する。解糖による ATP 産生効率は、酸化的リン酸化に比べてはるかに低いため、多くの腫瘍ではグルコースの取り込みおよび解糖が正常組織に比べて約 10 倍の速さで進行する。この性質は、がんの診断に有用である。グルコースのアナログである ¹⁸F で標識された FdG を投与すると、グルコース輸送体によってがん細胞により多く取り込まれる。取り込まれた FdG は、ヘキソキナーゼによって 6-phospho-FdG に変換されるが、その後の解糖経路によって代謝されない。したがって、がん細胞では、 ¹⁸F で標識された 6-phospho-FdG が蓄積するので、 ¹⁸F 崩壊による陽電子を検出することで(PET 検査によって)、がん組織部位を特定できる。