京都大学 大学院薬学研究科薬 学 部

Graduate School of Pharmaceutical Sciences
Faculty of Pharmaceutical Sciences
Kyoto University

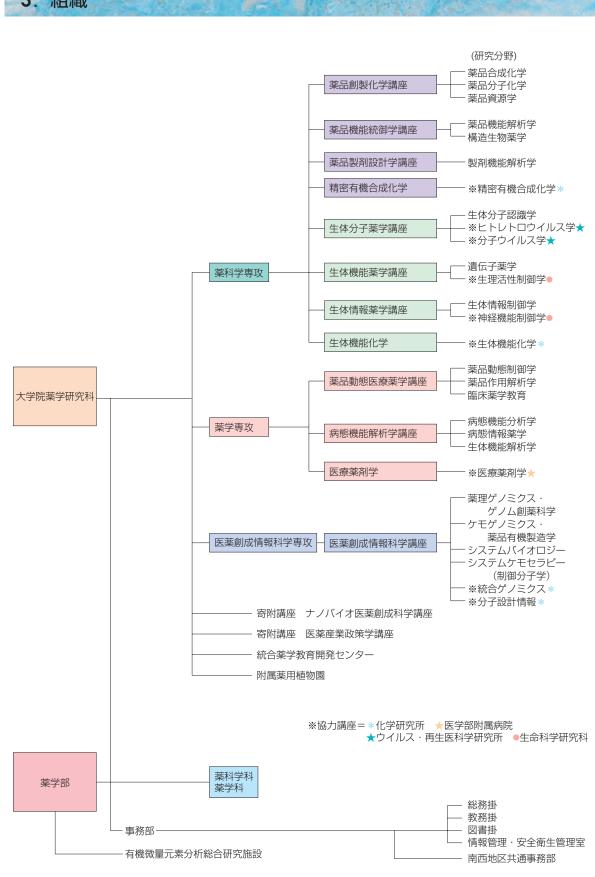
2016

目	次		
1.	沿	革	1
2 .	歴代学部	『長・研究科長 ――――――――――――――――――――――――――――――――――――	1
3 .	組	織—————	2
4 .	職	員	3
5 .	学	生—————————————————————————————————————	4
6.	卒業者・	修了者————————————————————————————————————	4
7.	博士学位	过授与数 ————————————————————————————————————	4
8 .	進路状	: 況————	5
9.	図書・雑	推志	5
10.	経	費	5
11.	建物面	┊積────	6
建物	配置図 -		6~7
研究	次容 —		8~11
分野	別研究内	9容	12~39
寄附	講座 —		40~41
附属	施設等-		42~43

薬学研究科・薬学部の目標

薬学は、疾病の治癒、健康の増進をもたらす「医薬品」の創製、生産、適正な使用を目標とする総合科学であり、生命と物質(医薬品)のインターフェイス構築を介して創薬と薬物使用適正化を基盤とした最適化薬物治療を実践し人類社会に貢献することを期待されると共に、医療において重要な役割を担う薬剤師の育成も社会から付託されている。

本薬学研究科は、諸学問領域の統合と演繹を通じて世界に例を見ない創造的な薬学の"創"と"療"の拠点を構築し、先端的創薬科学・医療薬学研究を遂行して社会の発展に大きく貢献することを目標とする。教育においては、生命倫理を基盤に独創的な創薬研究を遂行しうる資質、能力を有する研究者と、高度な専門的知識・技能を有し職能の指導者となる薬剤師の育成を目指す。また、薬学部においては、薬学の基礎となる自然科学の諸学問と薬学固有の学問に関する基礎知識と技術を教育し、薬学研究に対する知的好奇心と創造性および薬剤師職能の基礎となる医療薬学知識、職業倫理の醸成を通じて、研究者、医療人として求められる基本的素養の涵養を図る。


1. 沿革

```
昭和14年 3月
                             医学部薬品分析化学講座、薬品製造学講座新設
                             医学部薬学科新設 有機薬化学講座新設
        15年 6月
                             無機薬化学講座新設
        15年12月
        16年 4月
                             生薬学講座新設
                              学位の称号に薬学博士が加わる
        16年12月
                              医学部薬学科第1回卒業式挙行
       24年 5月
                             新制京都大学設置
                             薬剤学講座新設
生物薬品化学講座新設
京都大学大学院薬学研究科薬学専攻設置
       26年 4月
       27年 4月
       28年 4月
       29年 4月
                              医学部有機微量元素分析総合研究施設設置
                             薬学部(薬学科)設置、薬品分析学、薬品製造学、有機薬化学、無機薬化学、生薬学、薬剤学、生物薬品化学の各講座新設(医学部同講座の廃止)
有機微量元素分析総合研究施設を薬学部に附置
       35年 4月
                             製薬化学科、薬用植物化学講座新設薬品作用学講座、薬品工学講座新設
       36年 4月
       37年 4月
                             薬品物理化学講座、衛生化学講座新設
放射性薬品化学講座新設
       38年 4月
       39年 4月
       40年 4月
                             薬学研究科製薬化学専攻設置
                              薬品作用学講座を薬理学講座に、生物薬品化学講座を生物化学講座に改称
       41年 4月
       48年 4月
                              薬学部附属薬用植物園設置
       62年 5月
                             薬品工学講座を微生物薬品学講座に改称
                            架山上子調座で版生物架山子調座に以外
薬学研究科に情報薬学講座(薬学科無機薬化学講座振替)、分子作用制御学講座(新設)、
遺伝子薬品学講座(新設)を基幹講座とし、病態機能分析学、動態制御システム薬剤学、
生物有機化学(化学研究所)、生体機能化学(化学研究所)、医療薬剤学(医学部附属病院)の各
講座を協力講座とする薬品作用制御システム専攻(独立専攻)修士課程設置
薬学研究科薬品作用制御システム専攻(独立専攻)博士後期課程設置
大学院重点化により、薬学専攻、製薬化学専攻、薬品作用制御システム専攻を創薬科学専攻、生命
平成 5年 4月
          7年 4月
          9年 4月
                             ※ 「大学院生活にになり、米子子及、 製業に子子及、 業は11年7月間 「大学のでは、 大学のでは、 大学のいいは、 大学のいいは、 大学のいいは、 大学のいは、 大学のいは、 大学のは、 大学のいは、 大学のは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のいは、 大学のい
        10年 4月
        11年 4月
                              薬品製剤設計学講座薬品分子構造学分野を同講座ゲノム創薬科学分野に改称
        14年 4月
                              薬品機能統御学講座に構造生物薬学分野を新設
                             薬学研究科総合研究棟新営工事竣工
        14年10月
                             寄附講座「創薬神経科学講座」新設
薬学研究科附属創薬・医療連携薬学コア部門新設
寄附講座「医薬品理論設計学講座」新設
21世紀COEプログラム採に伴い協力講座生命知識システム学分野設置(設置期間:21世紀
        15年 4月
        15年 8月
        15年 9月
                             ての E プログラム実施期間)
国立大学法人京都大学設立
薬学部の総合薬学科を薬学科、薬学科に改組
        16年 4月
        18年 4月
                             薬学研究科附属統合薬学フロンティア教育センター新設(附属創薬・医療連携薬学コア部門の廃止)
薬品動態医療薬学講座に臨床薬学教育分野を新設
                             薬学研究科本館改修工事竣工
        19年 3月
                             薬子明九行本品は『エ事政工薬学研究科医薬創成情報科学専攻設置
寄附講座「ナノバイオ医薬創成科学講座」新設
寄附講座「システム創薬科学講座」新設
革新的ナノバイオ創薬研究拠点新設
        19年 4月
        19年 5月
       20年10月
       21年 4月
       22年 4月
                             創薬科学専攻、生命薬科学専攻、医療薬科学専攻(修士課程)を薬科学専攻(修士課程)に改組
                              局条付予等級、工品条付予等級、
最先端創薬研究センター新設
統合薬学教育開発センター新設
                             創薬科学専攻、生命薬科学専攻、医療薬科学専攻(博士後期課程)を薬科学専攻(博士後期課
       24年 4月
                              程)に改組
                              薬学専攻(博士課程)新設
寄附講座「医薬産業政策学講座」を新設
       26年 5月
                             附属薬用植物園移設
```

2. 歴代学部長·研究科長

山本 俊平(昭35.4 事務取	扱) 高木 博	司(昭55.5~57.4)	中川	照眞(平12.5~ 14.4)
富田 真雄(昭35.5~39.4)	矢島 治	明(昭57.5~59.4)	橋田	充(平14.5~18.3)
上尾庄次郎(昭39.5~43.4)	田中	久(昭59.5~61.4)	富岡	清 (平18.4~19.12)
掛見喜一郎 (昭43.5~45.4)	瀬﨑	仁 (昭61.5~63.4)	藤井	信孝(平20.1~20.9)
上尾庄次郎(昭45.5~47.4)	米田文	郎(昭63.5~平2.4)	伊藤	信行(平20.10~22.3)
宇野 豊三 (昭47.5~49.4)	横山	陽 (平 2.5~ 6.4)	佐治	英郎(平22.4~26.3)
犬伏 康夫 (昭49.5~51.4)	市川	厚 (平 6.5~ 8.4)	髙倉	喜信(平26.4~28.3)
井上 博之(昭51.5~53.4)	佐藤 公	道 (平 8.5~ 10.4)	中山	和久(平28.4~)
中垣 正幸 (昭53.5~55.4)	川嵜 敏	祐(平10.5~12.4)		

3. 組織

4. 職員 (平成29.2.1 現在)

① 役職員

 · 研究科長(学部長)
 中山和久
 : 評 議 員 金子 周司

 · 副研究科長(学部長)
 中山和久
 : 評 議 員 加藤 博章

 · 副研究科長(学部長)
 中山和久
 : 評 議 員 加藤 博章

 · 副研究科長掛谷秀昭
 : 事務長廣瀬幸司

② 職員数

	教育職員(基幹講座) その他職員									
教 授	准教授	講師	助 教 小 計 事務系 技術系				小 計	合 計		
13	15	5	11	44	8	3	11	55		
% 1	* 0	* 1	* 3	* 5		•		* 5		

※3 ※は寄附講座教員

③ 分野別教員一覧(基幹講座・寄附講座・協力講座)

専攻	講座	研 究 分 野	教 授	准教授	講師	助教
		薬品合成化学	高須清誠			山岡庸介
	薬品創製化学	薬品分子化学	竹本佳司		塚野千尋	小林祐輔
		薬品資源学		伊藤美千穂		
	** C 188 44 4* 4* 4* 1	薬品機能解析学	松﨑勝巳	星野 大	矢 野 義 明	
	薬品機能統御学	構造生物薬学	加藤博章	中津 亨		山口知宏
	薬品製剤設計学	製剤機能解析学	石濱 泰	杉山直幸(兼)		若林真樹
薬科	精密有機合成化学	精密有機合成化学*	川端猛夫	古田 巧		上田善弘吉田圭佑
学		生体分子認識学	竹島浩	柿澤 昌		市村敦彦
専攻	生体分子薬学	ヒトレトロウイルス学★			安永純一朗	志村和也
以		分子ウイルス学★	小柳義夫		佐藤佳	
		遺伝子薬学			三宅 歩	
	生体機能薬学	生理活性制御学	井垣達吏	大澤志津江		榎本将人
	//_ //_ \= +0 +0 +4	生体情報制御学	中山和久	申 惠媛		加藤洋平
	生体情報薬学	神経機能制御学●	根岸 学	加藤裕教		
	生体機能化学	生体機能化学*	二木史朗		今西未来	河野健一
		薬品動態制御学	橋 田 充		樋口ゆり子	
	薬品動態医療薬学	薬品作用解析学	赤池昭紀⑻	久米利明		泉安彦
薬				米澤 淳		
学		病態機能分析学	佐治英郎	小野正博		渡邊裕之
専	病態機能解析学	病態情報薬学	髙倉喜信	西川元也		髙橋有己
攻		生体機能解析学	金子周司	白川久志		永安一樹
	医療薬剤学	医療薬剤学★	松原和夫	中川貴之	今井哲司	大村友博中川俊作
		薬理ゲノミクス・ゲノム創薬科学		平澤明		-11 // IX IF
医		ケモゲノミクス・薬品有機製造学	大野浩章	大石真也		
薬		システムバイオロジー	岡村 均	土居雅夫	Jean-Michel Fustin	山口賀章
医薬創成情報科学専攻	医薬創成情報科学	システムケモセラピー(制御分子学)	掛谷秀昭	服部明	- Codi i i i i i i i i i i i i i i i i i i	西村慎一
科学		統合ゲノミクス*	緒方博之			Romain Blanc-Mathieu
専 仮			相刀时足			Canh Hao Nguyen
~		分子設計情報*	馬見塚 拓			山田誠
			清水一治®			шшшж
(安附	講座)ナノバイオ医薬創成を	21学	嶋田裕窓		武井義則	
(PJ PI JI	明圧/ ノノハーカ 区未別級	15	須藤哲央圏		EU 77 3% NJ	
			タ豚ロ人 (中)			田村正興
(安附	講座)医薬産業政策学		柿原浩明			和久津尚彦
(PJ PI JI	明任)以来庄未以水宁		10 NV (10 b)			迫田さやか
		医薬品開発教育分野				ЕЩС 1- //
統合海	薬学教育開発センター	創薬科学教育分野	中山和久㈱		津田真弘	大澤史宣
יוט ני 🏳 🌂	5」 払日用元ピンプ	実践臨床薬学分野	山下富義		/ 中 山 兲 山	八年又旦
附属率	 薬用植物園(園長:併)	大成咖外来于刀封	中山和久			
			マロかろ	杉山直幸		
ノし判明局	3本WIフレノエフド			1/ H E Ŧ	(筆	 ・) 兼任 (客) 客員

5. 学生 (平成28.5.1 現在)

薬学部

年次	入学		1年次			2年次			3年次			4年次			5年次			6年次			計	
学科	定員	男	女	計	男	女	計	男	女	計	男	女	丰	男	女	計	男	女	計	男	女	計
薬科学科	50	(1)	(1)	(2)		(1)	(1)	(1)		(1)		(1)	(1)							(2)	(3)	(5)
(4年制)	30	40	15	55	44	10	54	40	13	53	55	10	65							179	48	227
薬 学 科 (6年制)	30	14	17	31	15	14	29	14	16	30	20	11	31	17	14	31	15	21	36	95	93	188
	l	(1)	(1)	(2)		(1)	(1)	(1)		(1)	_	(1)	(1)							(2)	(3)	(5)
計		54	32	86	59	24	83	54	29	83	75	21	96	17	14	31	15	21	36	274	141	415
		男	女	計							男	女	計									
研究生		0	0	0				科目	等履信	修生	3	1	4									

薬学研究科

修士課程											
年次	年次 入学					2年次		計			
専攻	定員	男	女	計	男	女	計	男	女	計	
薬科学	50	(3)	(1)	(4)		(4)	(4)	(3)	(5)	(8)	
来付于	30	39	12	51	28	20	48	67	32	99	
医薬創成情報科学	14				(1)		(1)	(1)		(1)	
应来剧 以 阴积付于	14	15	3	18	11	1	12	26	4	30	
計	, i	(3)	(1)	(4)	(1)	(4)	(4)	(4)	(5)	(9)	
ΔI		54	15	69	39	21	60	93	36	129	

博士後期課程													
年次	入学		1年次			2年次			3年次			計	
専攻	定員	男	女	計	男	女	計	男	女	計	男	女	計
薬科学	22	(2)	(5)	(7)	(1)	(1)	(2)	(3)	(1)	(4)	(6)	(7)	(13)
来行于	22	11	6	17	9	1	10	14	7	21	34	14	48
医薬創成情報科学	7							(1)	(1)	(2)	(1)	(1)	(2)
区来剧以 旧刊付于	/	4	1	5	1	0	1	2	5	7	7	6	13
計		(2)	(5)	(7)	(1)	(1)	(2)	(4)	(2)	(6)	(7)	(8)	(15)
01		15	7	22	10	1	11	16	12	28	41	20	61

		男	女	計
7	科目等履修生	0	0	0

博士課程																	
	年次	入学		1年次		:	2年次			3年次			4年次			計	
専攻		定員	男	女	計	男	女	計	男	女	計	男	女	計	男	女	計
薬	学	15	5	2	7	7	2	9	4	0	4	5	0	5	21	4	25
i	計		5	2	7	7	2	9	4	0	4	5	0	5	21	4	25

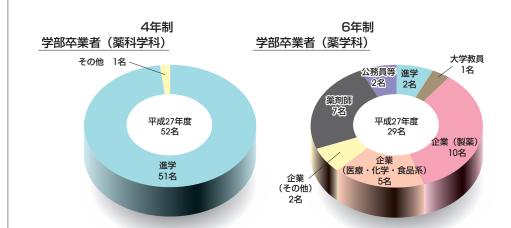
() 内数字は外国人留学生で内数

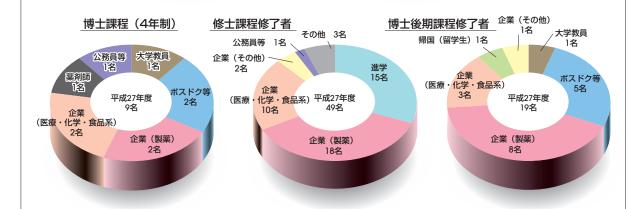
6. 卒業者・修了者

①学部卒業者数

		华耒年月	人致
旧制		昭16.12~昭28. 3	402
新制	医学部薬学科	昭28. 3~昭35. 3	300
	薬学部	昭36. 3~平28. 3	4,240
	合	計	4,942
	(学部卒	業者 80)	

②修士修了者数


修了年月	人数
昭30.3~平27.3	2,578


(修士修了者 51)

7. 博士学位授与数

	授与年月	人数
旧制(医学博士1名含)	昭18.10~昭37. 2	308
新制 課程博士	昭33. 9~平28. 3	886
論 文 博 士	昭36. 9~平28. 3	770
合	計	1,964
(課程博士授与者 28	、論文博士授与者 1)	

8. 進路状況 (平成27年度卒業者·修了者)

9. 図書·雑誌 (平成28.5.1 現在)

区分	和書	洋書	計	
図書所蔵冊数	11,916⊞	22,353冊	34,269⊞	
学術雑誌所蔵種数	170種	182種	352種	
雨マジュ 土川 σ	\^\0E 000 /7	/ L II N L / Z		

電子ジャーナル のべ85,000タイトル以上(全学で利用可能)

10. 経費

半成27年度	決算額	半成28年度予	·算額又は予定額
運営費交付金			(平成28.5.1現在)
人件費	505,609千円	運営費交付金	
物件費	209,282千円	物件費	210,857千円
寄附金	178,004千円	寄附金	89,706千円
科学研究費助成事業	256,030千円	科学研究費助成事業	219,614千円
厚生労働科学研究費	0千円	厚生労働科学研究費	0千円
科学技術人材育成費補助金(テニュアトラッ	ク普及・定着事業) 870千円	科学技術人材育成費補助金	不明(平成28年5月1日現在)
科学技術人材育成費補助金		(テニュアトラック普及・定着事業)	
(科学技術人材育成のコンソーシアムの構	築事業) 22,120千円	科学技術人材育成費補助金	10,491千円
医療研究開発推進事業費補助金	23,874千円	(科学技術人材育成のコンソーシア)	ムの構築事業)
(創薬等ライフサイエンス研究支援基盤事	業)	研究開発施設共用等促進費補助金	22,203千円
研究拠点形成費等補助金(リーディング)	大学院構築事業費) 1,500千円	(創薬等ライフサイエンス研究支援	基盤事業)
国立大学改革強化推進補助事業	72千円	受託研究費	189,022千円
受託研究費	263,171千円	共同研究費	21,503千円
共同研究費	22,265千円	合計	763,396千円
合 計	1,482,797千円		


11. 建物面積 (平成28.5.1 現在)

土 地 19,339㎡ 薬学部敷地 薬学部本館 9,329mf 薬学部教育棟 1,056m[†] 薬学部別館 884mf 薬用植物園管理室等 総合研究棟 5,615mf 栽培温室 215mf 実験排水処理施設 144m[†] 危険物倉庫 40m[†] 資材倉庫 27m[†] 計 19,339m[†] 17,310m[†]

建物配置図 (平成28.5.1 現在)

本館・別館

5 階	溶媒抽出室 終夜実験室
4 階	薬品合成化学 薬品分子化学 薬品資源学 アイソトープ薬学研究施設
別館4階	システムバイオロジー
3 階	構造生物薬学 製剤機能解析学 生理活性制御学 ナノバイオ医薬創成科学講座 セミナー室
別館3階	システムバイオロジー
2 階	生体分子認識学 遺伝子薬学 生体機能解析学 講義室 記念講堂
別館2階	臨床システム腫瘍学
1 階	薬品作用解析学 図書室 研究科長室 事務長室 事務室 会議室 管理室 講義室 ロッカー室
別館1階	薬用植物園管理室
地 階	動物飼育室 ネットワーク室 学生実習準備室

教育棟

2	階	講義室
1	階	情報処理演習室 マルチメディア講義室
地	階	実習室

総合研究棟

5	階	ケモゲノミクス・薬品有機製造学 クロマト測定室 ペプチド分析室 システムケモセラピー
4	階	生体情報制御学 病態機能分析学 細胞化学実験室 画像解析室 暗室
3	階	薬品機能解析学 薬理ゲノミクス・ゲノム創薬科学 分光学測定室 光学実験室
2	階	病態情報薬学 薬品動態制御学 細胞培養室 分光学解析室
1	階	臨床薬学教育 ESR室 ESR試料調整室 生体高分子分析室 低温実験室 組織化学実験室 低温室 医薬産業政策学 統合薬学教育開発センター
地	階	有機微量元素分析総合研究施設 NMR測定室 質量分析室 顕微鏡室

研究内容

薬科学専攻	
分野及び分野主任	研究内容
薬品合成化学 教授 高須 清誠	1. 生物活性天然化合物の合成 2. 高次分子変換のための実践的方法論の開拓 3. 特異機能を発現する人工低分子・集合体の設計と開発 4. 分子変換反応の新規活性化法および不斉化手法の開拓
薬品分子化学 教授 竹本 佳司	1. プロセス合成を指向した環境調和型有機合成反応の開発 2. 金属の特性を利用した新規分子変換法の開拓 3. 生物活性天然有機化合物及びその類縁体の全合成研究 4. 機能性複素環化合物の創製とバイオプローブ分子への展開 5. 糖ペプチド含有大・中分子の合成を指向した革新的合成触媒の開発
薬品資源学 准教授 伊藤美千穂	1. 二次代謝機能発現に関する研究、特にテルペノイドの生合成機構の解明 2. 生薬ならびに薬用植物に含まれる生理活性成分の研究 3. 薬用植物の実態と多様性に関する調査研究 4. 吸入投与による精油の生薬薬理学的研究
薬品機能解析学 教授 松﨑 勝巳	1. 抗菌性ペプチドの作用機構の解明と創薬への展開 2. アルツハイマー病発症機構の解明と予防・治療法の開発 3. 膜タンパク質の構造形成原理の解明 4. 受容体の機能解析と創薬 5. NMRによる生体分子の構造解析
構造生物薬学 教授 加藤 博章	1. ABC (ATP Binding Cassette)トランスポーターの構造薬理学 2. ペルオキシソーム膜タンパク質の膜局在化メカニズムの構造生物学 3. 精密立体構造に基づく酵素の触媒作用の構造的起源の解明 4. X線自由電子レーザーを用いた新規X線構造解析手法の開発
製剤機能解析学 教授 石濱 泰	1. プロテオミクス新規計測技術の開発 2. ヒトプロテオーム一斉定量分析に基づく細胞機能解析 3. 細胞内リン酸化ネットワークの解明 4. 微量組織試料の大規模定量解析と臨床プロテオミクスへの展開 5. プロテオミクス技術を用いた分子標的創薬に関する研究
精密有機合成化学 教授 川端 猛夫	1. 動的不斉制御の方法論と不斉反応への利用 2. 有機触媒による精密反応制御 3. 分子のキラリティーに基づく高次構造の構築 4. 分子認識および超分子化学に関する研究 5. 生物活性化合物の創出を指向した新規合成法の開発
生体分子認識学 教授 竹島 浩	1. 小胞体Ca2+シグナリングに関する研究 2. 中枢系の新規情報伝達に関する研究 3. 筋細胞の膜構築と機能に関する研究
ヒトレトロウイルス学 講師 安永純一朗 客員教授 松岡 雅雄	1. ヒトレトロウイルス(ヒトT細胞白血病ウイルス1型、エイズウイルス)感染症の分子病態研究2. ヒトレトロウイルスの複製機構に関する研究3. ヒトレトロウイルスに対する治療法の開発4. ウイルス感染症の動物モデルの開発
分子ウイルス学 教授 小柳 義夫	1. ウイルスの感染メカニズムの解明 2. レトロウイルス複製への細胞性因子関与における分子様式解析 3. エイズウイルス感染による免疫機構破壊過程と発症メカニズムの解明 4. 新規抗ウイルス療法の開発
遺伝子薬学 講師 三宅 歩	1. 細胞増殖因子(FGF)の脂肪組織、脳形成などにおける役割の解明 2. 遺伝子探索法による新規細胞増殖・分化因子遺伝子の探索と構造解析 3. 遺伝子機能抑制小型魚類の作成による新規遺伝子の個体レベルでの機能解析 4. 遺伝子欠損マウスの作成による新規遺伝子の機能解析とその分子機構の解明 5. 組織形成、組織修復の分子機構の解明と再生医学への応用

分野及び分野主任	研究内容
生理活性制御学 教授 井垣 達吏	1. 細胞競合の分子機構 2. 細胞間コミュニケーションを介した組織成長制御機構 3. がんの発生・進展機構
生体情報制御学 教授 中山 和久	1. 低分子量GTPaseによる繊毛関連タンパク質の輸送調節に関する研究 2. 繊毛内輸送タンパク質輸送複合体の構造と機能に関する研究 3. 生体膜のリン脂質動態制御の分子機構に関する研究 4. 生体膜の非対称性の制御による細胞機能調節およびその異常による疾患発症機構に関する研究
神経機能制御学 教授 根岸 学	1. 細胞形態及び細胞運動におけるRhoファミリー低分子量G蛋白質の機能の研究 2. 細胞形態及び細胞運動におけるRasファミリー低分子量G蛋白質の機能の研究 3. 神経軸索ガイダンス分子のシグナル伝達機構の研究
生体機能化学 教授 二木 史朗	1. 細胞機能・遺伝子を制御する生理活性蛋白質の創製 2. ペプチドを基盤とするバイオ高分子の細胞内導入法の開発とその原理 3. 生体膜の構造変化を誘起する蛋白質・ペプチドの機能設計 4. 人工転写調節蛋白質の設計と遺伝子発現制御 5. 膜蛋白質の会合制御とシグナル調節

分野及び分野主任	研究内容
薬品動態制御学 教授 橋田 充	1. 遺伝子医薬品の細胞特異的ターゲティング法開発 2. タンパク質医薬品の体内動態制御法開発 3. ナノテクノロジーによる新規DDSキャリア開発 4. 情報科学的アプローチによる薬物動態解析
薬品作用解析学 准教授 久米 利明 客員教授 赤池 昭紀	1. 神経変性疾患の病態形成機構の解明およびその予防・治療薬開発に関する研究 2. ゼブラフィッシュを用いた脳疾患モデル動物の開発 3. 中枢神経系におけるニコチン性アセチルコリン受容体に関する研究 4. 食品由来化合物による神経保護に関する研究 5. ドパミンニューロンの生存および再生に関する研究
臨床薬学教育 准教授 米澤 淳	1. 医薬品の適正使用に関する教育・研究 2. 薬物動態と薬効の速度論的解析に基づく個別化投与設計に関する研究
病態機能分析学 教授 佐治 英郎	1. 脳疾患、心疾患、がん、糖尿病などでの生体機能変化をインビボ解析する分子イメージング法の開発とそれによる病態及び薬物作用の解明に関する研究2. 病態の特性に基づく標的部位選択的移行、選択的活性化をおこす機能性画像診断・治療薬剤の創薬研究3. 生理活性金属化合物の生体作用の解明と治療への応用に関する研究
病態情報薬学 教授 髙倉 喜信	1. 遺伝子治療・DNAワクチン療法の最適化を目指した核酸医薬品開発 2. 核酸ナノデバイス・ハイドロゲルの開発 3. Exosomeを利用した疾患治療システムの開発 4. 高機能細胞治療システムの開発
生体機能解析学 教授 金子 周司	1. TRPチャネル等のイオンチャネルを対象とした生理機能解析、病因論、分子薬効解析、 リガンド探索、ゲノム科学に関する研究 2. 神経・グリア・免疫細胞連関の病態形成への関与に関する研究 3. 中枢セロトニン神経系による情動および行動制御に関する研究 4. 薬物有害事象や薬物依存の分子および細胞メカニズムに関する研究
医療薬剤学 教授 松原 和夫	1. 痛み・しびれの発生とその慢性化機構の解明 2. 抗がん剤による副作用の発現機序解明とその予防・治療法確立に向けたリバーストランスレーショナルリサーチ 3. 薬物動態に基づく効果・副作用発現機構に関する基礎・臨床研究 4. パーキンソン病発症機構の解明と新規治療法の探索 5. 薬効・副作用の発現を予測するバイオマーカーに関する研究

医薬創成情報科学専攻

分野及び分野主任	研究内容
薬理ゲノミクス・ ゲノム創薬科学 准教授 平澤 明	1. ゲノム包括的解析による新規創薬標的の発見とターゲットバリデー ション 2. バイオインフォマティックによるin silico創薬研究 3. 生体内オーファンG蛋白質共役型受容体のリガンド探索 4. 遺伝子改変動物、病態動物を用いた遺伝子の個体レベルの機能解析
ケモゲノミクス・ 薬品有機製造学 教授 大野 浩章	1. 複雑な化学構造を有する生物活性化合物の合成と創薬展開 2. 複雑な化学構造を一挙に構築するための新反応の開発 3. 新しいペプチド・ペプチドミメティクスの化学合成法の開発と応用 4. Gタンパク共役型受容体リガンド・プローブの創製 5. 化合物ライブラリーの構築と応用
システムバイオロジー 教授 岡村 均	 再生、老化における分子時計の細胞内時間ネットワーク機構を解明する。 分子時計の異常による慢性疾患(高血圧、発癌、神経変性疾患)の発症機構を解明し、時間を基にした新しい病気の理解、その治療法を開発する。 哺乳類生体リズムにおける時間の生成と調律の仕組みを、細胞、組織、生体という多層レベルで解明する。 リガンド、受容体の解析による時間を調律する創薬研究
システムケモセラピー (制御分子学) 教授 掛谷 秀昭	1. 多因子疾患(がん、感染症、心疾患、神経変性疾患、免疫疾患、糖尿病など)に対する 次世代化学療法の開発を指向した先端的ケミカルバイオロジー研究 2. 創薬リード化合物の開拓を指向した新規生理活性物質の天然物化学・天然物薬学 3. ケモインフォマティクス、バイオインフォマティクスを活用したメディシナルケミスト リー研究およびシステムケモセラピー研究 4. 有用物質生産・創製のための遺伝子工学的研究 (コンビナトリアル生合成研究等)
統合ゲノミクス 教授 緒方 博之	1. ウイルスのゲノム解析 2. 微生物群集と環境の相互作用 3. 創薬と環境保全への応用を目指した化学・生命科学情報の統合
分子設計情報 教授 馬見塚 拓	1. バイオインフォマティクス:ゲノムワイドなデータからの情報処理技術による知識発見 2. 先端情報科学技術の創出による生命情報解析・創薬技術の高度化 3. 薬物投与データからの生体分子間ネットワーク推定による創薬インフォマティクス 4. 生体分子の生命機構の理解に向けた情報抽出技術の高精度化 5. システムズバイオロジー:計算機による模倣からの生命現象の解析・理解

統合薬学教育開発センター

 分野及び分野主任
 研究内容

 医薬品開発教育分野
 1. 横断的統合型教育システムの開発 2.ナビゲーションシステムを利用した医薬開発教育システムの開発

 創薬科学教育分野
 1.参加型・体験型教育システムの開発 2.ナビゲーションシステムを利用した創薬科学教育システムの開発

 実践臨床薬学分野
 1. 医療倫理教育システムの開発 2. 副作用情報に基づく医薬品の適正使用

寄附講座

PORT OF THE PROPERTY OF THE PARTY OF THE PAR	Control of the Contro
分野及び分野主任	研究内容
ナノバイオ医薬創成科学 客員教授 清水 一治	1. ナノレベル最先端技術(DNAチップ)とバイオ技術を融合 2. がんの臨床検体分析による分子標的薬のターゲット探索、薬理ゲノミクス研究 3. がんの臨床検体分析から得られた結果を基にした抗体医薬創成 4. 食道がんの発生メカニズム研究
医薬産業政策学 教授 柿原 浩明	1. 新薬・先発薬とジェネリック薬がそれぞれ果たすべき役割の追究 2. 新薬開発の経済効果 3. 日本における創薬振興策

薬品合成化学

教 授:高須清誠 助 教:山岡庸介

3

研究概要

医薬品や医用材料の多くは有機分子であり、新しい医薬品や材料の開発には新規化合物の創製が必須です。化学反応を駆使して分子を自在に組み立てられることは有機合成化学者の特権です。その特権を最大限に活かすためには、「どのような物質を創るかを考える発想力」、「どのような方法で合成するかを考える論理力」、「どのように使えば効果的かを考える解析力」の醸成が大変重要となります(図1)。薬品合成化学分野では、生命科学に貢献する新しい反応及び分子構造の発見と発明を目指し、日々研究を行なっています。以下に、当分野で展開している研究テーマについて概説します。

図1 薬品合成化学分野の研究の位置づけ

1) 短行程高次分子変換の方法論の開拓

複雑な分子構造をもつ化合物を構築するためには多段階を経由する合成が一般的です。即ち、ひとつの結合を形成するために一段階の作業を要し、それを多段階にわたって積み重ねます。一方、連続反応や多成分反応とよばれる方法では、複数の官能基に対して連続的に電子が移動して複数の結合が一挙に形成されます。そのため、反応・精製過程が短縮でき、経済的かつ省資源的に目的化合物を得ることができる特徴があります。しかし、それを高選択的かつ高収率に行なうことはしばしば困難となります。我々は生理活性物質の短行程合成を目指して、アニオン・カチオン・ラジカル・ペリ環状反応活性種をそれぞれ巧妙に使い分け、それらを集積することで有用な分子変換法の開発研究を行なっています。また、前例のない選択的分子変換を可能とする触媒や触媒反応の開発も検討しています。

2) 生体機能性人工低分子の創製

生体内で分子を機能させるためには、生体高分子と低分子の特異的な相互作用を精密に理解する必要があります。我々は、有機化合物の動的構造変化や物性を精査し、生体内環境での化学反応性を予見することで、天然物には見られない新たな機能を有する人工機能性低分子の開発に挑戦しています。我々の強みである有機合成力を活

用し、酸性環境でのみDNAを切断できる刺激応答分子を創製しました(図2)。膜タンパクの機能や構造を制御しうる分子の探索、生命活動を模倣した運動をする分子集合体の開発や、生体内に関わらず特殊な環境に応答するスイッチ分子開発にも注力しています。

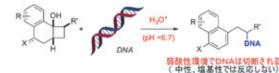


図2 pH応答型DNA切断分子

3) シクロブタン・シクロブテンの化学

四員環炭化水素は、環ひずみに由来する独特な反応性、固有の三次元構造を示します。しかし、合成法が限定的であり、その化学的研究は十分になされていません。我々は独自に開発した実践的四員環合成法を基盤として、様々なシクロブタンに関する化学的研究を展開しています。例えば、シクロブテンの電子環状反応を応用して、合成難度の高い多置換中員環化合物に効率よく変換する方法を明らかにするとともに分子不斉に関する興味深い現象も発見しました(図3)。また、シクロブタンを原料として、カーボンナノチューブやグラフェンなどの次世代有機材料の開発にも取り組んでいます。

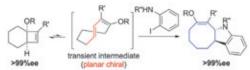


図3 四員環炭化水素の独創的反応例

4) 生理活性天然物の合成研究

当研究室で開発・確立した方法論を活用して、興味深い生理活性をもつ天然物や医薬品の合成研究を行っています(図4)。また、天然物の誘導体や類縁体を設計・合成し、新たな化合物の創製も目指しています。

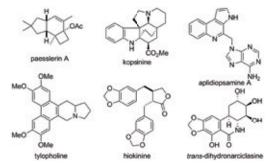
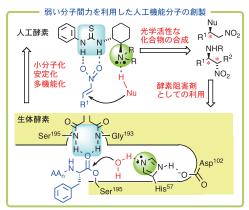


図4 全合成した生物活性天然物

- Arichi, N.; Yamada, K.; Yamaoka, Y.; Takasu, K. An Arylative Ring Expansion Cascade of Fused Cyclobutenes via Short-Lived Intermediates with Planar Chirality. J. Am. Chem. Soc. 2015, 137, 9579-9682.
- ■Kuroda, Y.; Harada, S.; Oonishi, A..; Yamaoka, Y.; Yamada, K.; Takasu, K. Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S_N2' Reaction Angew. Chem. Int. Ed. 2015, 54, 8263-8266.
- Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.; Takasu, K. The Development of a Brønsted Acid-promoted Ene-Ynamide Cyclization toward the Total Syntheses of Marinoquinolines A and C, and Aplidiopsamine A. J. Org. Chem. 2015, 80, 957-964.
- Nagamoto, Y.; Yamaoka, Y.; Fujimura, S.; Takemoto, Y.; Takasu, K. Synthesis of Functionalized Polycyclic Aromatic Compounds via a Formal (2+2)-cycloaddition. Org. Lett. 2014, 16, 1008-1011.

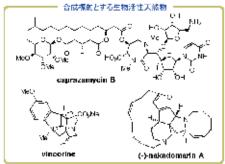
薬品分子化学


教 授: 竹本 佳司 講 師: 塚野 千尋 助 教: 小林 祐輔

研究概要

有機化学とは有機分子の物性、構造そして反応性を理解し、これを自在に制御することで新しい有機分子を創製する学問です。このことは、まさに薬学における有機化学の役割と重要性を明確に示しています。すなわち、疾患の治療には有機反応によって構成されている生体反応の本質的な理解と、有機分子である薬の自在な合成が不可欠であるからです。私たちの分野では、有機化学における新現象の発見を基盤として創薬化学に貢献すべく、薬を作る技術の開発と生命現象の解明に取り組んでいます。

1) 人工生体機能分子の創製と機能開拓:有機小分子を用いて、生体巨大分子を模倣し、その能力を改良しつつ有機合成に応用することはできないだろうか?これが人工生体機能分子創製の出発点でした。いろいろ検討した結果、セリンプロテアーゼをモデルとして、分子内にアミノ基を有するチオウレア触媒の開発に成功しました。この触媒は適切な三次元空間に、求電子剤を活性化するチオウレア部位と、求核剤を活性化するアミノ基を有するため、ほぼ中性条件でさまざまな反応を立体選択的に進行させることができます。


このような有機触媒は従来の金属触媒と比較して、安全性、利便性、経済性などに優れており、医薬品製造の実用的なツールとなりうるものです。実際に我々は幾つかの医薬品の合成を完成させており、現在、より高機能な触媒の開発を目指して研究を進めています。

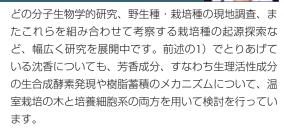
また、医薬品候補となる化合物を迅速に供給する方法の開発は非常に重要です。従来の有機合成では、ひとつの化学結合を形成または切断するために一段階の反応行程を要する場合がほとんどでした。我々は、ちょうどドミノ倒しのように、連続的に化学反応が進行するような有機触媒の開発にも興味をもっております。このような反応は連続反応や多成分反応とよばれ、複雑な構造をした有機分子ですら、非常に短い段階で作り出すことができます。

これらの我々が見出した独自の触媒や合成技術を用いて、様々な生体機能分子の小分子化やそれら機能性小分子を利用した生命現象の解明、または医薬品候補化合物の創製にも取り組んでいます。

2) 生物活性有機化合物の迅速な合成を指向した新規金属触媒反応の開発:当分野では、Pd, Ir, In, Fe, Cu, Ru, Rhなどの遷移金属を研究対象として、高度に官能基化された生物活性化合物の迅速な合成法の開発に取り組んでいます。これまでに、ジエン鉄カルボニル錯体の可動性を利用した連続的な立体制御反応や、Pd触媒とInを用いたアリル化反応などの開発に成功し、現在、Pd, Ni, Cu触媒を用いるアミド形成反応や、Pt, Au, Biなどの触媒を用いるカスケード型の付加環化反応などの開発に取り組んでいます。さらに、これらの新反応を基盤として、医薬品や診断薬として期待される生物活性天然物や分子プローブの合成研究を進めております。

- •Suetsugu, S.; Muto, N.; Horinouchi, M.; Tsukano, C.; Takemoto, Y. Synthesis and application of tetrahydro-2*H*-fluorenes by a Pd(0)-catalyzed benzylic C(sp³)-H functionalization, *Chem. Eur. J.*, **2016**, *22*, 8059-8062. (selected hot paper)
- •Izumi, S.; Kobayashi, Y.; Takemoto, Y. Catalytic asymmetric synthesis of anti-α,β-diamino acid derivatives, Org. Lett., 2016, 18, 696-699.
- Saito, M.; Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Direct dehydroxylative coupling reaction of alcohols with organosilanes through Si-X bond activation by halogen bonding, Org. Lett., 2015, 17, 3000-3003.
- Nakamura, H.; Tsukano, C.; Yasui, M.; Yokouchi, S.; Igarashi, M.; Takemoto, Y., Total synthesis of (-)-Caprazamycin A. Angew. Chem. Int. Ed. 2015, 54, 3136-3139.

薬品資源学


准教授: 伊藤 美千穂

研究概要

人類は長い歴史の中で傷病の治療のためにさまざまな植物や動物、鉱物などを利用し、その経験の中から薬となるものを選び出してきました。現代でもなお利用され続けているその天然の薬が生薬であり、また多くの近代医薬品が、天然の薬効成分をモデルとして開発されました。薬品資源学分野では、この天然の薬をめぐり、今なお解明されていない事象について、またさらなる新たな薬のタネを探求しつつ、フィールドワークとラボワークを組み合わせたユニークなスタイルの研究を行っています。

1) 薫香生薬のアロマセラピー様作用に関する研究: 日本ならではの奥ゆかしい伝統に「香道」があります。上等の沈香(伽羅、伽南香、などいろいろな種類があります)を穏やかに暖め、たちあがる芳香を聞くのが作法ですが、最近、この沈香の芳香成分には強い鎮静作用があることがわかってきました。そこでマウスを使った経鼻吸収モデルを用いてこれを実験的に再現し、活性成分の詳細な検討や応用の可能性について研究をすすめています。これまでに特徴的なセスキテルペン成分が活性の一部を担うことを明らかにしていますが、沈香には非常に多種多様な芳香成分が含まれており、さらなる検討が必要とされています。また、沈香のほかにも香袋(匂い袋)に含まれる薫香生薬類や、ハーブ類の精油(エセンシャルオイル)類について、同様の手法を用いて検討を行っています。

2) 薬用植物の二次代謝機能発現に関する研究:植物に含まれる薬効成分の非常に多くは二次代謝成分と言われるもので、全ての生物に共通な一次代謝成分と異なり、植物に固有のものです。我々はこの二次代謝成分の中でも特に精油や樹脂に多く含まれる芳香成分について、成分研究と、その生合成酵素や酵素の発現機構についての研究を行っています。特にシソについては、交配実験を主体とした遺伝学、精油成分に注目した化学分類、また精油成分生合成酵素遺伝子のクローニングや機能発現な

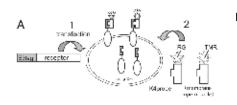
3) フィールドワーク: 生薬に含まれる薬効成分も、 薫香生薬に含まれる芳香成分も、植物が生産する化合物 です。生命現象のひとつとして営まれる二次代謝を理解 するためには、研究者自身がその植物を知り、向き合う ことが肝要であると我々は考えます。ですから、研究対 象の植物がどのような環境で生育し、どうやって子孫を 残すのか、可能な限り調査します。それが現地調査(フ ィールドワーク)であったり附属薬用植物園(フィール ド=畑)での栽培(ワーク=作業)であったりするわけ です。実験用サンプルの収集もフィールドワークの大切 な作業のひとつですが、そうやって対象に触れながら、 いろいろなことを観て、感じることで、また新たな発想 が生まれてくるのです。伝統薬物を対象とした現地調査 では、文字情報として残されることが少ない民間伝承薬 を主なターゲットとして聞き取り調査と標本収集を行い ます。実験科学らしからぬ、ヒトとの対話が主役となる 聞き取り調査の現場では、信頼関係をいかに築くかが最 も重要なポイントとなります。

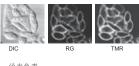
4) 生薬・薬用植物に関するレギュラトリーサイエンス: 生薬・薬用植物は漢方薬等の医薬品として用いられるほか、香辛料や健康食品素材等、食品として利用されるものも多くあります。また、生薬製剤類の輸出入に際しては、同名異物など国際取引ならではの事象が事故や深刻な副作用を引き起こす原因になることがあります。そこで生薬・生薬製剤類の安全性を確保するための正しい基原の判別方法等、行政面に活用できる手法や技術の開発研究に生薬学の専門家の立場から参画しています。

- extstyle ex
- Kakuyou Ogawa, Michiho Ito, Appetite-enhancing effects: the influence of concentrations of benzylacetone and trans-cinnamalde hyde and their inhalation time, as well as the effect of aroma, on body weight in mice. Biological & Pharmaceutical Bulletin, 39, 794-798 (2016).
- Naoko Sato-Masumoto, Michiho Ito, A domain swapping approach to elucidate different regiospecific hydroxylation by geraniol and linalool synthases from perilla. *Phytochemistry*, 102, 46-54 (2014).

薬品機能解析学

授: 松﨑 勝巳 准教授: 星野 大 講 師: 矢野 義明


研究概要


生体膜は受容体やイオンチャネルなどの機能性タンパ ク質と多種の脂質からなり、これに糖鎖修飾が加わった、 いわば「超分子複合体」で、これらが動的に相互作用し あって様々な機能を実現しています。したがって、生体 膜の構造と機能を解明するには、タンパク質と脂質との 相互作用を理解することが不可欠です。具体的には以下 のようなテーマについて研究を行っています。

- 1) 抗菌性ペプチドの作用機構の解明と創薬への展 開:抗菌性ペプチドの産生が、ヒトを含むあらゆる生物 に共通の先天性免疫機構であることが、この20年間の 研究で明らかとなっています。我々はアフリカツメガエ ル由来のマガイニン2、カブトガニ由来のタキプレシン 1などの抗菌性ペプチドの作用機構の解明に早くから着 手しました。これらのペプチドが細菌選択的に結合し、 細胞膜に「ペプチド-脂質超分子複合体ポア」という孔 をあけて、細胞内容物(イオンなど)を漏出させると同 時に、膜脂質内外の非対称性を消失させ、さらにペプチ ド自身が細胞内に侵入することを世界にさきがけて明ら かにしてきました。現在、創薬に向けてハイブリッドペ プチドや高分子修飾ペプチドの創製を進めています。
- 2) アルツハイマー病発症機構の解明と予防・治療法 の開発:アルツハイマー病の病理学的特徴の一つにアミ ロイド β 蛋白質(A β)の凝集・沈着があり、本来可溶 性のABが凝集・不溶化し神経細胞毒性を発現すること が発症に重要だと考えられていますが、凝集のメカニズ ムに関してはいまだ明らかではありません。一方、脳に 沈着したAβは、神経細胞中に豊富に存在するスフィン ゴ糖脂質であるGM1ガングリオシド(GM1)と結合し ていることが明らかにされており、アルツハイマー病発 症機構の解明の手がかりとして非常に重要であると考え られます。我々は神経細胞中に豊富に存在するスフィン ゴ糖脂質であるGM1ガングリオシド(GM1)が生体膜 中でスフィンゴミエリン、コレステロールなど共に脂質 ラフトと呼ばれるマイクロドメインを形成していること に着目し、脂質ラフトの組成変化がGM1のABとの結 合およびABの凝集に関与することを明らかにしてきま した。また、生細胞に対してABがどのような挙動を示

すのかを可視化することにも成功しています。

- 3) 膜タンパク質の構造形成原理の解明:受容体など の膜タンパク質の構造形成原理は水溶性タンパク質のそ れと大きく異なると考えられていますが、難溶性である 膜タンパク質の単離や精製は一般に難しく研究が遅れて います。我々は、多くの膜タンパク質の最小構成単位で ある膜貫通へリックス構造を持つモデルペプチドを用い て、膜タンパク質フォールディング一般に適用可能な、 膜環境でのヘリックスー脂質間、ヘリックスーヘリック ス間相互作用に寄与する力(ファンデルワールス力、水 素結合、イオン結合など)の熱力学量を測定できるユニ 一クな実験系を構築しています。
- 4) Gタンパク質共役型受容体の機能制御法の開発: 創薬の大きなターゲットであるGPCRの生細胞中での機 能を解析・制御する手法の開発を行っています。現在汎 用されている蛍光タンパク質を用いた標識法の欠点を補 う新手法として、任意の蛍光色素を生細胞膜の特定の GPCR特異的だけに迅速に標識できる「コイルドコイル タグ―プローブラベル法」(下図)を開発し、GPCRの 活性化に伴う内在化を高感度・簡便に検出することを可 能にしました。この技術を駆使して、複雑で不明な点の 多いGPCRの生体膜での挙動の解明・制御を目指した研 究を行っています。
- 5) NMRによる蛋白質の動的立体構造解析:溶液高分 解能NMRは、水溶液中での蛋白質や核酸などの生体高 分子の立体構造を精度良く決定するための唯一の手法と して、今日の構造生物学において重要な役割を果たして います。また、蛋白質のフォールディング反応や、リガ ンドの結合に伴う立体構造変化をアミノ酸残基ごとに追 跡する手法として用いられています。このような高い分 解能を誇る溶液高分解能NMRを用いて、水溶性蛋白質 やモデルペプチドのフォールディング反応を詳細に解析 しようと試みています。また、自己会合性が高いために 溶液NMRによる解析ができないような蛋白質について も、測定・解析を可能にする新規の手法の開発も試みて います。

BG: ローダミングリーン

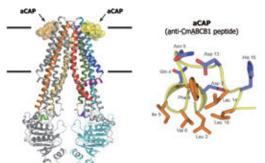
TMR: テトラメチルローダミン

コイルドコイルラベル法

(A) ラベル原理 (B) E3タグ-β2アドレナリ ン受容体発現細胞にRG-K4およびTMR-K4プロ ーブ(各10nM)を混合投与5分後の共焦点顕 微鏡像。

- ●Yano et al. Cholesterol-induced lipophobic interaction between transmembrane helices using ensemble and single-molecule FRET. Biochemistry 54, 1371, 2015.
- lacktriangleUeno et al. Comparison between the aggregation of human and rodent amyloid eta-proteins in GM1 ganglioside clusters. Biochemistry 53, 7523, 2014.
- ■Kawano et al. A dimer is the minimal proton-conducting unit of the influenza A virus M2 channel. J. Mol. Biol. 426, 2679, 2014.

構造生物薬学


数 授:加藤 博章 准教授:中津 亨 助 教:山口 知宏

研究概要

生体分子の機能を解明するためには、その立体構造を原子レベルで明らかにすることが大切です。しかし、静止した構造を決定するだけでは不十分です。なぜなら、実際に機能を発揮するときの生体分子は、立体構造を変化させることで高い性能を発揮しているからです。そこで我々は独自に確立してきた速度論的結晶学という、立体構造の時間変化を精密に捉える方法論を駆使して、以下のような生物学的に未解明な生体分子の仕組みの解明を行なっています。

1) ATP Binding Cassetteトランスポーターの構造薬 理学: ATP Binding Cassette (ABC) トランスポータ ーとは、遺伝子上で良く保存された構造のATP結合部位 を分子内にもつ膜タンパク質であり、自らATPを加水分 解してエネルギーを発生させることで、細胞の膜を介し た化合物の輸送を行っています。その代表がP糖タンパ ク質 (P-gp) またはABCB1あるいはMDR1と呼ばれる 多剤排出トランスポーターです。P-gpは、外部から体 内へと侵入してくる多種多様な化合物(異物)を吐き出 すことで生体を防御している重要な分子です。しかし、 体にとっては薬も異物であり、P-gpによって吐き出さ れることになることから、その機能を明らかにすること は、薬理学における最大の課題の一つです。特に、がん の化学療法においては、初回の抗がん剤治療によってわ ずかに生き残った癌細胞がP-gpを大量に作ることで、 再発時には、これまで処方しなかった抗がん剤までもが 効かない状態を作り出してしまい、治療を困難にしてい ます。我々は、ヒトのP-gpと機能が良く似ているが、 立体構造が安定で結晶化に適しているCmABCB1を好熱 性の真核生物から発見し、その立体構造を決定しました。 さらに、CmABCB1に対して細胞の外側から強力に結合 する新規メカニズムの阻害剤を作り出しました。さらに、 解明した立体構造を基に、多剤を認識できる仕組みや ATPによって駆動される基質輸送の仕組みを解明しよう としています。

2) X線自由電子レーザーを用いた新規X線構造解析手法の開発 X線結晶構造解析法の最大の欠点は良質の結晶を必要 とする点であり、その克服は構造生物学者が挑むべき最

大の課題である。その克服に向けて、発生させるX線の 強度を上昇させるための試みが続けられてきた。その結 果、X線自由電子レーザーと呼ばれる方法による第四世 代の放射光施設が最近稼働を開始し、SPring-8に代表さ れる第3世代放射光の10億倍強力なX線が利用可能に なってきた。このX線自由電子レーザーを用いれば、驚 異的な強さのX回折強度が測定可能となることから、結 晶を作らずに1つの分子を用いて立体構造を決定すると いう夢が実現するかもしれない。我々は、まず、結晶を マイクロメートル程度の微結晶まで小さくして立体構造 を決定する可能性を追求している。特に、我が国が米国 に次いで稼働させた自由電子レーザー施設SACLAは世 界で初めて短波長領域のX線を実現しており、我々はこ の優位性を活用することで可能となる立体構造決定法の 構築を目指している。薬物の受容体や輸送体はいずれも 結晶化が困難な膜タンパク質であり、微結晶による構造 解析法が実現すれば、創薬研究に革命的な進歩が得られ るものと期待される。

3) 酵素の触媒作用の構造的起源の解明:酵素は、化 学反応を驚異的なスピードへと加速することができるタ ンパク質です。そこで、その機能の仕組み(からくり) を担う「構造基盤」を、X線結晶構造解析を用いて明ら かにすることを目的に、ホタルの発光酵素ルシフェラーゼ の立体構造解析を行っています。ホタルルシフェラーゼ は黄緑色の発光反応を触媒します。我々はルシフェラー ゼ-DLSA複合体の構造解析を行うことで動的X線結晶構 造解析に成功し、発光反応の際、ルシフェラーゼの構造 変化を捕らえることに成功しました。DLSAは我々自身 で合成した化合物で、発光反応におけるルシフェリル AMP中間体を模倣した化合物です。野生型ルシフェラー ゼのIIe288はDLSAのオキシルシフェリン部分に近づい ていましたが、赤色に光るS286N変異体ではIIe288の動 きは観測されませんでした。このことからルシフェラー ゼはIIe288を使って発光色を制御していることを明らか にしました。現在は発光の量子収率がなぜ90%と高い のかを明らかにしようとしています。一方、リパーゼと いう脂質分解酵素の立体構造から受容体へと進化を遂げ たのが、植物ホルモン、ジベレリンの受容体タンパク質 です。我々は、決定したその立体構造を基に、そのジベ レリン受容の仕組みから、分子進化の過程を解明してい

CmABCB1 (Cyanidioschyzon merolae由来P-糖タンパク質) と我々が発見した特異的阻害剤との複合体の立体構造 (左側)。その阻害剤aCAP (抗CmABCB1ペプチド)のみの立体構造 (右側)。

- •Kodan et al. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc Natl. Acad. Sci. USA, 111, 4049, 2014.
- Yamashita *et al.*, An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Sci Rep, **5**, 14017, 2015.
- Nakatsu et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature. 440, 372, 2006.

製剤機能解析学

教 授:石濱泰 准教授:杉山 直幸(先端創薬研究プロジェクト)

助 教: 若林 真樹

研究概要

製剤機能解析学分野は、分析科学を基軸とし、生体構成分子の計測を通じて細胞や分子の機能を解明することを標榜しています。中でも、質量分析、微量分離分析、計算科学や細胞生物学等を駆使したプロテオーム解析の方法論開発やそれに基づく細胞機能解析や医薬品開発への応用などに挑戦しています。具体的には、以下の5つの項目について研究を行っています。

- 1) プロテオミクス新規計測技術の開発
- 2) ヒトプロテオーム一斉定量分析に基づく細胞機能解析
- 3) 細胞内リン酸化ネットワークの解明
- 4) 微量組織試料の大規模定量解析と臨床プロテオミクスへの展開
- 5) プロテオミクス技術を用いた分子標的創薬に関する 研究

プロテオーム研究は、ゲノムや遺伝子研究とは違い、いまだに計測技術がボトルネックとなっており、細胞内で発現しているタンパク質のすべてをまとめて計測することができていません。また、プロテオーム研究の対象となる(1)タンパク質の発現、(2)タンパク質の局在、(3)タンパク質間相互作用、(4)タンパク質の翻訳後修飾・プロセッシング・スプライシングといったことについても、計測技術的な課題がバリアとなり、十分に研究が進んでいません。私達は、これらの計測技術的な課題に取り組むとともに、新技術開発で拓かれた分野につい

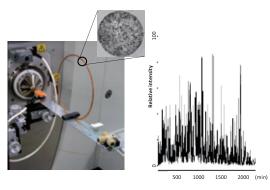


図1 NanoLC-MSによるプロテオーム一斉解析例

左:3.5メートル長の自作カラムを用いたnanoLC-MSシステム。 右:大腸菌タンパク質一斉解析におけるトータルイオンカレントクロマトグラム。マイクロアレイ規模でのタンパク質同定が可能となった。 ては生物学的な展開までやりきることを目標にしています。

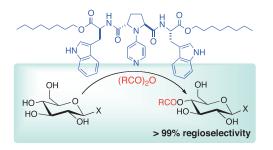
新規計測技術として、複雑でダイナミックレンジの広い試料を究極の分離分析法でオンライン分離しながら質量分析計で測定し、独自のデータ処理システムで解析するシステムの開発に取り組んでいます。具体的には、ガスクロマトグラフィーで用いるようなメートル長のキャピラリーカラム(理論段数1,000,000段を超える世界最高性能の液体クロマトグラフィー用カラム)を研究室内で作製し、この超高分離能システムを用いて細胞内で発現している全タンパク質の一斉分析を行っています(図1)。すでに大腸菌などの生物では発現している全タンパク質の一斉分析が可能になっており、ヒトなどの高等生物のプロテオーム解析への展開も進んでいます。また定量解析や高感度化のための技術開発も行っています。

さて、細胞内シグナル伝達ネットワークにおいて、キナーゼやホスファターゼによる可逆的リン酸化修飾反応は中心的な役割を果たしています。リン酸化を受けるタンパク質は全ヒトタンパク質の30%程度であると推測されていました。私達は、独自のリン酸化ペプチド濃縮法を開発し、リン酸化プロテオーム解析に応用してきました。その結果、当研究室での成果が、公共データベースUniProt中に集積されている世界中の研究成果の合計よりも2倍以上優れており、ヒトタンパク質の70%以上がリン酸化修飾をうけていることが分かってきました。ところがそれらの責任キナーゼやホスファターゼのほとんどは不明です。細胞内のリン酸化ネットワークがどのように構成されているかを実験的および計算科学的手法を用いて解明することが次の課題となっています。

細胞内シグナル異常に基づく様々な疾病のうち、特にがんは我が国の死亡率第1位を占めています。私達が開発したリン酸化プロテオミクスシステムをがん分子標的薬のin vivoプロファイリングに応用し創薬支援ツールとして開発するとともに、様々な疾病におけるリン酸化異常をスクリーニングするシステムとしての応用研究も展開中です。さらに、新規に見つかってきた機能未知のリン酸化タンパク質のシグナル伝達ネットワーク解析も行っています。また、リン酸化修飾に加え、他の翻訳後修飾プロテオミクスについてもその測定システムを開発中です。

- Tsai et al., Large-scale determination of absolute phosphorylation stoichiometries in human cells by motiftargeting quantitative proteomics. Nat. Commun., 6, 6622, 2015.
- ■Yamana et al., Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot nanoLC-MS/MS analysis with meter-scale monolithic silica columns. *J. Proteome Res.* 12, 214-21, 2013.
- •Imami et al., Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol. Cell. Proteomics 11, 1741-57, 2012.
- Sugiyama et al., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell. Proteomics 6, 1103-9, 2007.

精密有機合成化学


教 授:川端 猛夫 准教授:古田 巧 助 教:上田 善弘

特定助教: 吉田 圭佑

研究概要

当領域ではキラリティーに主体をおいた研究を行っています。(1)単位時間内にキラル分子として存在するエノラートの化学とこれを利用する不斉反応の開発。(2)遠隔不斉誘導を基盤とする高活性、高選択的有機触媒の開発。(3)動的分子認識に立脚した位置選択的反応の開発。(4)キラルユニットの集積効果: D, L-型オリゴエステル、ペプチドの高次構造と機能特性。(5)水素結合を介した軸性不斉化合物の創製と不斉反応への利用。(6)配糖体天然物の位置選択的全合成。以下に最近のトピックスについて述べます。

1) 有機触媒を用いる糖類の位置選択的官能基化:多官能基性化合物への位置選択的な置換基導入は次世代の合成目標のひとつです。例えば糖類への位置選択的な官能基導入は多糖類の合成や天然物の全合成、コンビナトリアルライブラリー構築の鍵となるステップで、通常は保護-脱保護の操作を駆使して行なわれますが、このような分子変換を一段階で行なう方法はこれまで存在しませんでした。今回、当分野ではこの方法論開拓のチャレンジを行い、1位をアセタール保護した糖に位置選択的アシル化を起こす有機触媒の開発に成功しました。先ず、糖の認識部位として2つのL-トリプトファン誘導体を側鎖に持つ $C_{\mathbb{Z}}$ 対称不斉有機触媒を設計、合成しました。グルコース誘導体のアシル化を1mol%の触媒、1.1当量のイソ酪酸無水物、1.5等量の2、4、6-コリジンを用いて行なうと、4-アシル化体が98%収率、99%の選択性

(1%は3位アシル化体)で得られました。この時、通常の反応では主生成物となる一級水酸基(6位)のアシル化体や2位アシル化体、またジアシル化体は全く得られませんでした。一方、本反応を通常のアシル化触媒である4-ジメチルアミノピリジン(DMAP)を用いて行なうと、6-, 4-, 3-, 2-アシル化体が30:18:30:1:21の比率(計47収率)で得られ22%のジアシル化体と10%の原料回収を伴うというランダムな生成物を与え、反応性を全く制御できませんでした。このことから触媒の2つのL-トリプトファン側鎖が、基質糖の4つの水酸基を識別してアシル化を起こす動的分子認識過程に重要な働きをしていることがわかりました。

2) アミノ酸から4置換炭素を持つ環状アミノ酸への enantiodivergentな不斉分子変換:通常キラリティー を持たないと考えられる有機分子や反応中間体も単位時 間内にはキラルな分子種として存在する場合があります (動的不斉)。エノラート構造の持つ動的不斉を利用する と従来にはない不斉記憶型の不斉誘導が可能になりま す。当分野で独自に開発したこの手法を用いて新しい骨 格をもつアミノ酸や含窒素複素環の合成を行っていま す。例えばL-アミノ酸から得られる1をDMF中、塩基力 リウムヘキサメチルジシラジド(KHMDS)で処理する と軸性不斉エノラートAが生成し、分子内アルキル化に より4置換炭素を持つ環状アミノ酸が最高99%の光学純 度で得られます。この時の立体化学は保持で、元々のア ミノ酸のキラリティーがエノラート生成-分子内アルキ ル化の過程を通じて高度に保存されます(不斉記憶)。 一方、1をTHF中、塩基リチウム2, 2, 6, 6-テトラメチ ルピペリジド(LTMP)で処理すると環化体が最高91% の光学純度で立体反転を伴って得られます。これは LTMPの作用によりAとは逆の絶対配置を持つキラルエ ノラートBが生成するためです。このようにして、安価 に入手容易なL-α-アミノ酸を任意の立体化学を持つ4置 換炭素含有環状アミノ酸に変換することが初めて可能に なりました。

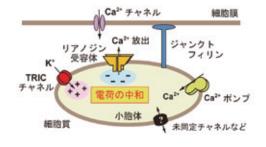
$$\begin{array}{c} \text{KHMDS} \\ \text{R} \\ \text{CO}_2\text{H} \\ \text{NH}_2 \end{array} \begin{array}{c} \text{R} \\ \text{R} \\ \text{OC}_2\text{Et} \\ \text{Boc} \\ \text{N} \\ \text{(CH}_2)_n - \text{Br} \\ \text{Br} \\ \text{DETO}_2\text{C} \\ \text{R} \\ \text{R} \\ \text{N} \\ \text{CO}_2\text{Et} \\ \text{Pseudoenatiomeric} \end{array} \begin{array}{c} \text{EtO}_2\text{C} \\ \text{R} \\ \text{R} \\ \text{CO}_2\text{Et} \\ \text{Pseudoenatiomeric} \\ \text{Up to 99\% ee} \end{array}$$

- Kawabata, T. et. al., Total Synthesis of Ellagitannins via Regioselective Sequential Functionalization of Unprotected Glucose. Angew. Chem. Int. Ed. 2015, 54, 6177-6180.
- •Kawabata, T. et. al., Asymmetric Induction via Short-Lived Chiral Enolates with a Chiral C-O Axis. J. Am. Chem. Soc. 2013, 135, 7102-7105.
- •Kawabata, T. et. al., Chemoselective Oxidation by Electronically Tuned Nitroxyl Radical Catalysts. Angew. Chem. Int. Ed. 2013, 52, 8093-8097.
- •Kawabata, T. et. al., Asymmetric α-Arylation of Amino Acid Derivatives by Clayden Rearrangement of Ester Enolates via Memory of Chirality. J. Am. Chem. Soc. 2013, 135, 13294-13297.

生体分子認識学

教 授: 竹島 浩 准教授: 柿澤 昌 特定助教: 市村 敦彦

研究概要


生体分子群はお互いに物理的および機能的に相互作用し、多彩な化学反応を引き起こすことにより、多様で柔軟な生命現象を構築しています。生体分子認識学分野では、基本手法として生化学・遺伝子実験法を用いることにより、その生命現象を分子レベルで明らかにする研究を遂行しています。研究活動によりもたらされる成果は、基礎生物学の発展に寄与するのみではなく、薬物開発に向けた有用な標的分子の設定や遺伝子疾患等の病態解明などへも貢献しています。以下に、現在遂行している具体的な研究課題について概説します。

1) 小胞体カルシウムシグナリングに関する研究:小 胞体からのCa²⁺放出は、筋収縮、伝達物質放出、膜電 位調節など多彩な細胞機能に関与しています。細胞内 Ca²⁺ストアとして働く小胞体は、様々なタンパク質に よりその機能が構築・制御されていますが、その分子実 体については不明な点が多く残されています。興奮性細 胞における小胞体の構成タンパク質の役割を1つ1つ明 らかにすることにより、小胞体Ca²+放出の分子基盤を 解明することを目指しています。特に、リアノジン受容 体によるCa²⁺放出の生理機能、リアノジン受容体機能 に対するジャンクトフィリンの貢献、その他の小胞体 Ca²⁺放出に必須な分子の検索などについて研究を進め ています。近年、細胞膜Ca²+チャネルとリアノジン受 容体の機能的共役に必要な結合膜構造の形成に、ジャン クトフィリンが重要な役割を果たしていることを示しま した。また、TRICチャネルが、小胞体からのCa²+放出 に伴って発生する小胞内腔の負電荷を中和するカウンタ ーイオンチャネルとして機能し、効率的なCa²⁺放出を 制御していることを明らかにしました。下図では、我々 の研究において分子同定された小胞体Ca²⁺シグナリン グ関連タンパク質の主要分子群を示しています。心筋細 胞においてこれらの分子群の欠損は心不全による個体致 死性を引き起こし、点変異挿入はヒト心筋症や不整脈な どの原因となります。さらに、その中の幾つかのものは 降圧薬や抗不整脈薬の標的分子となっています。

2) 中枢系情報伝達に関する研究:近年の急速な生物学の発展においても、中枢神経系における情報処理を分子レベルで理解するための知識を現在の人類は十分に持

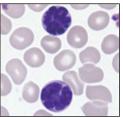
ち合わせておりません。現在でも中枢系からは機能不明 なタンパク質群が多く見出されており、未同定な情報伝 達系の存在が示唆されています。従って、それらタンパ ク質の脳構築や神経機能への寄与を検討し、生理機能を 明らかにする研究は重要であると考えられます。また、 中枢神経系においても小胞体Ca²+シグナル系の制御機 構や機能的役割については未だに多くの点が不明であり ます。近年、我々は小胞体Ca2+シグナル系において重 要な役割を担うリアノジン受容体や小胞体型Ca2+ポン プなどのCa²⁺輸送体分子の新規制御機構を見出しまし た。現在、これらCa²⁺輸送体分子の制御機構が破綻す るとニューロンやシナプスの機能、さらには運動学習な どの脳機能にも異常が現れることを示す結果が得られつ つあり、Ca²+輸送体分子の機能破綻に起因する疾患の 解明や分子診断法の確立、さらには創薬へと研究が発展 することが期待されます。

3) 筋細胞の膜構築と機能に関する研究:組織学や細 胞生物学の教科書を紐解きますと、心筋や骨格筋細胞に は実に不思議な細胞膜や小胞体膜の形態学的構造がある ことに驚かされます。例えば、横管系(transverse tubule)、三つ組(triad junction)、小胞体終末部 (junctional sarcoplasmicreticulum) と横行部 (Iongitudinal region)、Z-tubule (Z線と小胞体の近接 結合)などです。筋分化の過程でこれらの構造は正確に 再現されますので、遺伝子産物により規定されているこ とに間違いはないのですが、その分子機序はまったく不 明と言っても過言ではない現状です。これらの膜構造に 不可欠な分子群を同定し、それらの機能の解明を目指し た研究を遂行しています。現在では、ミツグミン23, 29,53と命名した分子に注目した実験に取り組んでいま す。ミツグミン29は、横管膜の微細構造を規定すると ともに、筋細胞の老化にも深く関与する膜タンパク質で あることが最近の成果で示されました。また、ミツグミ ン53は、壊れた筋細胞の膜修復に関与していることを 明らかにしました。その解明された生理機能に基づき、 新規なバイオマーカーや組み換えタンパク質医薬品の開 発に向けた研究に現在発展しています。

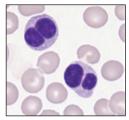
興奮性細胞のCa²⁺流入によるCa²⁺放出(CICR)に寄与する分子群

Ca^{*}放出チャネルであるリアノジン受容体は、細胞膜上のCa^{*}チャネルと機能共役して開口し、小胞体からのCa^{*}放出を司る。このCICR機構と呼ばれる情報伝達では、ジャンクトフィリンが形成する結合膜構造中に両チャネルが近接することが必須となる。また、TRICチャネルが小胞体内腔の負電荷を中和するカウンターイオンチャネルとして機能し、小胞体からの効率的なCa^{*}放出を維持している。さらに、生理的な小胞体Ca^{*}放出が機能するためには、未同定のイオンチャネルやCa^{*}結合タンパク質も不可欠であると推定される。従って、それらの分子同定や機能解明を目指す研究は、基礎生物学の発展のみならず、医療系応用に向けた基盤整備においても重要な成果が期待される。

- Thao C. et al. Mice lacking the intracellular cation channel TRIC-B have compromised collagen production and impaired bone mineralization. Sci. Signal. 9 ra49, 2016.
- Tao S. et al. Facilitated hyperpolarization signaling in vascular smooth muscle overexpressing TRIC-A channels. *J. Biol. Chem.* 288, 15581-15589, 2013.
- •Kakizawa S. et al. Nitric oxide-induced calcium release via ryanodine receptors regulates neuronal function. EMBO J. 31, 417-428, 2012.

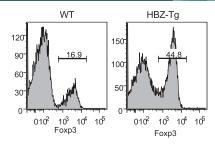

ヒトレトロウイルス学

客員教授: 松岡 雅雄 講 師: 安永 純一朗 助 教: 志村 和也

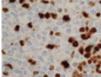

研究概要

ヒトT細胞白血病ウイルス1型(human T-cell leukemia virus type 1: HTLV-1)とヒト免疫不全ウイルス(human immunodeficiency virus: HIV)は、共にヒトに病原性を有するレトロウイルスであるが、HTLV-1がCD4陽性Tリンパ球を増やし白血病を起こすのに対して、HIVはCD4陽性Tリンパ球を破壊して免疫不全を起こす。

日本では約100万人がHTLV-1に感染していると推定されており、全世界では1000-2000万人の感染者が存在する。HTLV-1は、一部の感染者に成人T細胞白血病(adult T-cell leukemia: ATL)やHTLV-1関連脊髄症等の炎症性疾患を引き起こす。我々はHTLV-1のマイナス鎖にコードされるHBZが全てのATL細胞で発現し、Tリンパ球の増殖を促進することを見出した。HBZトランスジェニックマウス(HBZ-Tg)がTリンパ腫や全身性炎症性疾患を発症することから、HBZはHTLV-1の病原性責任分子であると考えている。


Acute ATL


Chronic ATL


ATL細胞は過分葉化した核を有する。

HBZは機能的に異常な制御性T細胞の数を増やすことで腫瘍や炎症性疾患を誘導している可能性が示唆されている。HBZはNF- κ B、TGF- β 、NFATなど様々なシグナル経路を修飾することが明らかとなってきた。HBZが宿主細胞のシグナル経路を複雑に攪乱し、最終的に発がんに導くと考えられる。さらにHBZと結合する複数の宿主因子に関して、発がんにおける意義を解析中である。

HBZトランスジェニックマウス(HBZ-Tg)では制御性Tリンパ球が増加する。

T-cell lymphoma (HE)

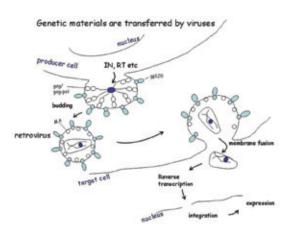
T-cell lymphoma (Foxp3)

HBZ-TgはTリンパ腫を発症し、腫瘍細胞はFoxp3を発現する。

HIV感染症は、CD4陽性Tリンパ球を減少させ、後天性免疫不全症候群(AIDS)を引き起こす。以前はAIDS患者の大多数が死亡するというまさしく死の病であった。しかし、様々な抗HIV薬の開発による抗HIV療法の確立は、HIV感染症が「制御可能な慢性ウイルス感染症」であるという疾患概念の変化をもたらした。しかし、現在の抗HIV療法では体内からのウイルス完全排除は不可能であり、AIDS発症を未然に防ぐためには終生にわたる抗HIV薬の服用が不可欠である。これは同時に、薬剤耐性HIVの出現頻度を高める要因となっている。我々は、HIV感染症に対する新規治療薬の開発ならびにHIV薬剤耐性機構の解明に焦点を当て、より効果的な抗HIV/AIDS療法の確立を目指している。

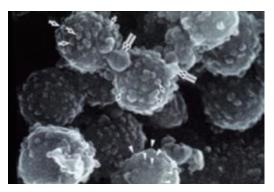
HIV感染症に対する新規治療薬の開発では、HIVと宿主細胞との膜融合反応を標的とする融合阻害薬や、ウイルスゲノムを宿主染色体に組み込む反応を標的としたインテグラーゼ阻害薬などに関する研究をこれまで行ってきた。現在は、既存の抗HIV薬とは全く異なる作用機序を有する新規抗HIV薬に関する開発研究を進めている。

- Yasuma K, Yasunaga JI, Takemoto K, Sugata K, Takenouchi N, Nakagawa M, Suzuki Y, and Matsuoka M. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog, 12(1): e1005372, 2016.
- Mitobe Y, Yasunaga JI, Furuta R, and Matsuoka M. HTLV-1 bZIP factor (HBZ) RNA and protein impart distinct functions on T cell proliferation and survival. Cancer Res, 75: 4143-4152, 2015.
- Sugata K, Yasunaga JI, Mitobe Y, Miura M, Miyazato P, Kohara M, and Matsuoka M. Protective effect of cytotoxic Tlymphocytes targeting HTLV-1 bZIP factor. Blood, 126: 1095-1105, 2015.
- ■Ma G, Yasunaga JI, Akari H, Matsuoka M. TCF1 and LEF1 act as T-cell intrinsic HTLV-1 antagonists by targeting Tax. Proc Natl Acad Sci U S A, 112; 2216-2221, 2015.


分子ウイルス学

教 授:小柳 義夫 講 師:佐藤 佳

研究概要


ウイルス研究から多くの生命科学に関する知見が得られ、それを基盤にした治療薬の開発という医学・薬学領域の進歩はめざましい。そこで私たちの研究室では生命そのものを理解する研究からヒトを救う研究まで幅広く研究活動を行うことを目的としている。以下のテーマについて研究を行い国際的な場で活躍できるように指導する。

1) ウイルス感染メカニズムの解明: ウイルスは細胞から細胞へと感染する。すなわち、その遺伝子を細胞から細胞へ移動させる(下図)。これは細胞間の分子運搬系でもあり、それぞれの分子がどのように関わるのか解析する。

2) レトロウイルス複製への細胞性因子関与における分子様式解析:ウイルスが増殖するには細胞が必須である。一方、細胞には種特異的にウイルス感染を抑制する因子がレトロウイルス研究から見出されてきた。それらの分子メカニズムには未だに不明な点が多い。特に免疫反応に関与する分子を中心に解析し、免疫学とウイルス学の両者からの理解を深める。

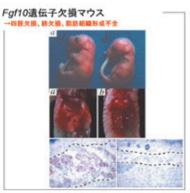
3) エイズウイルス感染による免疫機構破壊過程と発症メカニズムの解明:エイズウイルスであるhuman immunodeficiency virus (HIV) (下図はT細胞上のHIV電子顕微鏡写真) はヒトを免疫不全に陥れる。そのメカニズムはいまだに不明である。このウイルスの免疫担当細胞に対する影響をヒトの細胞を用いた培養系あるいはヒト血液幹細胞を移植したマウス体内において解析し、その発症メカニズムを明らかにする。

4) 新規抗ウイルス療法の開発: 抗HIV剤開発の進歩はめざましい。しかしながら、個体からのHIV排除によるエイズ治癒までは至っていない。そのために、最近その進歩が著しいゲノム編集法などの新規の分子治療法の開発を目ざす。

- Sato K, Takeuchi SJ, Misawa N, Izumi T, Kobayashi T, Kimura Y, Iwami S, Takaori-Kondo A, Hu WS, Aihara K, Ito M, An DS, Pathak VK, and Koyanagi Y. APOBECD and APOBECF potently promote HIV-1 diversification and evolution in humanized mice. PLoS Pathog, 10:e1004453, 2014.
- Ebina H, Misawa, Kanemura Y, and Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3: 2510, 2013.
- ●Sato, K, Misawa N, Iwami S, Satou Y, Matsuoka M, Ishizaka Y, Ito M, Aihara K, An DS, and Koyanagi Y. HIV-1 Vpr accelerates viral replication during acute infection by exploitation of proliferating CD4⁺ T cells *in vivo*. PLoS Pathog, 9:e1003812. 2013.

遺伝子薬学

講 師: 三宅 歩


研究概要

生体では、多種多様な細胞が相互に作用しあい、その結果として組織形成が進行します。この細胞間の相互作用を担うのは細胞外分泌分子です。従って、組織形成において、細胞外分泌因子は非常に重要な役割を果たしています。遺伝子薬学分野では、この細胞外分泌因子に着目し、逆遺伝学的手法により組織形成のしくみの解明を試みています。逆遺伝学では、まず機能不明な新規遺伝子を同定し、その中から組織形成に関わると予想される遺伝子を見つけます。そして、その遺伝子の機能解明を通じて組織形成のしくみを明らかにしていきます。我々の研究により得られる知見は、基礎生命科学の発展に貢献するのみではなく、再生医療などの医薬への応用も期待されます。以下に、これまでの成果と現在行っている研究について概説します。

1) 新規なFgf遺伝子の探索と形態形成における役割の 解明: Fgf (Fibroblast growth factor; 繊維芽細胞増殖 因子)は、最初、繊維芽細胞に対する増殖因子として牛 の脳より同定されました。その後、様々な実験の過程で 見つかった因子のいくつかが、構造上の類似性から、 Fgfと命名されました。我々が研究を開始する以前には Fgf1~9の、9種類のFgfが同定されていました。これら のFgfのほとんどは細胞外に分泌され、細胞増殖、細胞 分化など様々な生物活性を有します。また、生理的な役 割として、血管形成、創傷治癒などに加え、様々な組織 の形成に重要であることが明らかにされていました。 我々は、この組織形成因子としてのFgfの重要性に着目 しました。そして、9種類のFgf以外に、組織形成に重要 なFgfが存在することを期待し、Fgf間の構造上の類似性 を指標に、新規なFgfの同定を試みました。その結果、 新たに9種類のFgf(Fgf10、16、17、18、19、20、21、 22、23)を同定しました。さらに、我々が同定したFgf について、組織形成における役割の解明を進めました。 遺伝子欠損マウスの作成、解析から、Fgf10 が四肢、肺、 脂肪組織の形成に、Fgf18が骨・軟骨形成、肺形成に重

要であることを明らかにしました。また培養細胞を用い、Fgf20がドーパミン産生神経細胞分化促進、保護活性をもつことを明らかにしました。従って、Fgf20は、ドーパミン産生神経細胞の脱落に起因するパーキンソン病などの予防、治療への応用が期待されます。さらに、遺伝子機能抑制ゼブラフィッシュ胚の解析から、Fgf19が前脳と眼の形成に、Fgf21が赤血球の形成に重要な役割を果たしていることを明らかにしました。特にFgf21は、従来造血因子として利用されているエリスロポエチンとは異なる作用機序により赤血球形成を促進していることから、創薬への応用が期待されます。現在も引き続き、遺伝子欠損マウス、遺伝子機能抑制ゼブラフィッシュ胚の作出、解析などを通じ、Fgfが調節する組織形成、その詳細な分子機序の解明を行っております。

2) Fgf以外の新規な分泌因子遺伝子の探索と形態形成 における役割の解明:近年、遺伝子データベースの拡充、 整備が進み、機能不明な遺伝子が多数公開されています。 その中には、細胞外分泌因子の遺伝子も多く含まれてい るものと期待されます。我々は、データベース上に存在 する遺伝子配列の中から、独自の手法により分泌因子と 予測される因子を探索しました。さらに、それらの発現 部位、発現時期などの解析を行い、胎児期の組織形成へ の関与が期待される新規分泌因子を複数同定しました。 例えば、その内の一つのEctodinは、分泌因子BMPのア ンタゴニストとして機能し、生物種に固有の歯の本数、 形状の決定に重要な役割を果していることを明らかにし ました。また、側板中胚葉に発現しているfibinはレチノ イン酸シグナルとWntシグナルの下流因子として機能 し、ゼブラフィッシュの胸びれ形成において必須の役割 を果たしていることを明らかにしました。その他、脳形 成に関与することが期待される因子等を複数同定してお り、現在、機能解析とその作用機序の解析を進めていま す。

Fgf10遺伝子欠損マウス及び

Fgf19遺伝子機能抑制ゼブラフィッシュ胚 Fgf10遺伝子欠損マウス(各図右)では四肢、肺 の欠損(それぞれ上段、中段)及び白色脂肪組織 の形成不全(下段)が観察される。

またFgf19遺伝子機能抑制ゼブラフィッシュ胚(各図右)では野生型ゼブラフィッシュ胚(左)に比較して、矢印で示すように脳と眼の形成不全が観察される(上段)。また、眼について切片化して観察した所、レンズの形成不全と網膜のパターニングの異常が観察される(下段)。

- •Miyake et al., Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 9, e110836, 2014.
- Miyake et al., Fgf22 regulated by Fgf3/Fgf8 signaling is required for zebrafish midbrain development. Biol. Open 2, 515, 2013.
- •Miyake et al., Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mech. Dev., 128, 577, 2012.

生理活性制御学

教 授: 井垣 達吏 准教授: 大澤 志津江 特定助教: 榎本 将人

近年の分子細胞生物学の発展により、細胞の多様な振る舞いを分子レベルで説明できるようになってきた。しかし、個々の細胞挙動がどのように相互連絡して「細胞集団としての機能」が生み出され、多細胞生命システムが構築されるのか、その仕組みはほとんど分かっていない。当研究室では、細胞同士の「競合」と「協調」という現象に着目し、その分子機構を解析することで、器官発生や組織恒常性維持を支える細胞間コミュニケーションの基本原理、さらにはその破綻によって引き起こされるがんの発生・悪性化機構の解明を目指している。

細胞間コミュニケーション機構を生体レベルで解明するために、その解析に最も効果的なショウジョウバエをモデル生物として用いている。ショウジョウバエの大きなアドバンテージである遺伝学的解析、イメージング解析、および分子細胞生物学的解析技術を駆使するとともに、ショウジョウバエで明らかになった基本原理を哺乳動物細胞系に適用して解析することで、その普遍性や多様性の解明を目指す。

1)「細胞競合」の分子機構とその生理的役割に関する研究

生態系で見られるような生物個体間の生存競争に類似 の現象が、多細胞生物を構成する細胞間のレベルにも存 在することが近年明らかとなり、「細胞競合(cell competition)」と名付けられた。すなわち細胞競合とは、同種の細胞間で相対的に「適応度」の高い細胞 (winner) が低い細胞 (loser) を積極的に集団から排除 する現象である。これは、1975年にショウジョウバエ で最初に発見された現象で、最近では哺乳類細胞におい ても同様の現象が見いだされつつあるが、その分子メカ 「ズムはいまだ不明な点が多い。細胞競合の生体内での 役割としては、組織に生じた異常細胞の排除、幹細胞二 ッチにおける優良幹細胞の選別、がん細胞による周辺組 織の駆逐など様々な生命現象が示唆されているが、その 生理的意義についてはまだまだ分からないことが多い。 私たちの研究室では、様々な細胞競合モデル系を確立し、 細胞競合の分子機構とその生理的役割、さらにはがんを 始めとする種々の病態における細胞競合の役割と分子機 序の解析を進めている。

ヒトのがんのほとんどは上皮由来である。上皮由来がんの発生・進展には、上皮細胞の頂底軸方向の極性(apico-basal極性)の崩壊が深く関与すると考えられている。私たちは、極性が崩壊したがん原性細胞がその周囲を正常細胞に囲まれると細胞競合の「loser」となって上皮組織から積極的に排除されることを見いだし、

そのメカニズムを解析してきた(Igaki et al., Curr. Biol., 2006; Igaki et al., Dev. Cell, 2009; Ohsawa et al, Dev. Cell, 2012; Takino et al, Dev. Biol, 2014)。このことは、細胞競合が細胞間コミュニケーションを介した「組織内在性のがん抑制機構」を担っていることを意味している。私たちは、極性崩壊以外にも様々な細胞変化や突然変異によって細胞競合が引き起こされることを見いだし、その分子機構の解析を進めている。また、実際に細胞競合が生体内で「いつ」「どこで」「どのようなメカニズムで」引き起され、発生過程における器官構築やがんをはじめとする種々の病態発現に貢献しているのかを解析するとともに、理論家との共同研究を通じて細胞競合数理モデルを構築し、細胞間コミュニケーションを介した動的な恒常性維持システムの普遍法則の解明を目指している。

2) 細胞間コミュニケーションを介したがんの発生・悪性化機構に関する研究

がんの発生・進展過程において、がん細胞を取り巻く 微小環境が重要な役割を果たすことが近年分かってき た。しかし、がん微小環境の構築機構やそれによる腫瘍 悪性化機構はいまだ不明な点が多い。私たちは、ショウ ジョウバエ腫瘍形成・悪性化モデルを確立し(Igaki et al., Curr Biol, 2006)、細胞間コミュニケーションを介し たがんの発生・悪性化機構の生体レベルでの解析を進め てきた。これまでに、がん遺伝子Rasの活性化とミトコ ンドリアの機能障害を同時に起こした変異細胞が炎症性 サイトカインUpd(IL-6ホモログ)を産生・分泌し、そ の周辺の良性腫瘍をHippo経路依存的に悪性化すること を明らかにしてきた(Ohsawa et al, Nature, 2012)。 また、この変異細胞が細胞老化を起こし、SASPを介し てがん悪性化を促進することを見いだしてその機構を明 らかにした (Nakamura et al, Nat. Commun, 2014)。 さらに、がん遺伝子Srcを活性化した変異細胞がHippo 経路を介して周辺細胞の過剰な増殖を引き起すことも見 いだした (Enomoto and Igaki, EMBO Rep, 2013)。 これらの解析系を利用して、細胞同士の「協調」による 腫瘍悪性化の基本原理を遺伝学的に解析するとともに、 異なるがん遺伝子を活性化した細胞同士の相互作用を解 析するための新たなショウジョウバエモデル系を構築 し、その解析を進めている。さらに、ショウジョウバエ で得られた知見を哺乳類培養細胞系で解析し、細胞間コ ミュニケーションを介した腫瘍形成・悪性化機構の普遍 法則の解明を目指している。

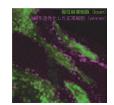


図1 上皮組織で起こる細胞競合

図2 ショウジョウバエ脳に浸潤・転移する腫瘍

主要論文

Nakamura et al.,

Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in *Drosophila*.

Nat Commun, 5, 5264 (2014)

Enomoto and Igaki,

Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in *Drosophila*. *EMBO Rep*, 14, 65-72 (2013)

Ohsawa et al.,

Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in *Drosophila*. *Nature*, 490, 547-551 (2012)

Ohsawa et al.,

Elimination of oncogenic neighbors by JNK-mediated engulfment in *Drosophila*. *Dev Cell* 20, 315-328 (2011)

生体情報制御学

教 授:中山 和久 准教授:申 惠媛 助 教:加藤 洋平

研究概要

1) 細胞内メンブレントラフィックと繊毛内タンパク質輸送に関する研究:

約60兆個(37兆個という説もあります)の細胞からなる私たちヒトの体が正しく機能するためには、各細胞が正しく機能しなければなりません。細胞内には様々なオルガネラが存在しており(図2)、細胞膜に加えてオルガネラは脂質二重層からなる生体膜によって仕切られて、固有の機能を担っています。細胞が正しく機能するためには、各タンパク質が合成された場所から機能すべき正しいオルガネラや細胞膜へと輸送されなければなりません。私たちは膜で囲まれた構造体によって媒介される輸送システム(メンブレントラフィック)について研究をしています。

私たちは、一次繊毛というオルガネラ内でのタンパク 質輸送機構の解明に取り組んでいます。一次繊毛には外 部シグナルを受容する多くの受容体が局在していること から、「細胞のアンテナ」と呼ばれています。繊毛のタ ンパク質輸送が異常になると、細胞のアンテナとしての 機能が果たせなくなり、「繊毛病」と総称される多様な 遺伝性疾患が引き起こされます。

一次繊毛内には微小管からできた軸糸という構造があり、繊毛内タンパク質輸送複合体(IFT複合体)がモータータンパク質のキネシンとダイニンを使って順行輸送と逆行輸送を行っています(図1)。IFT複合体は20種類以上のサブユニットから成る非常に複雑な分子機械です。私たちは、IFT複合体の構築様式、各サブユニットの役割分担、積み荷タンパク質の認識機構、順行輸送と逆行輸送の制御機構などの問題を解決し、繊毛病の原因解明をめざしています。

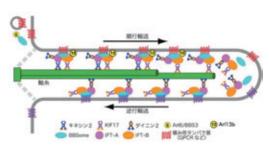


図1 IFT複合体による繊毛内タンパク質輸送

生体膜の脂質動態制御による細胞機能調節に関する 研究・

生体膜の脂質二重層の間では、リン脂質組成の非対称 性が存在しています。例えば、細胞膜の外葉にはPCや SMが多く、内葉にはPS、PE、PIが豊富に存在していま す (図2)。非対称な脂質分布の動的恒常性は、リン脂 質を細胞外側から細胞質側に移動させるフリッパーゼ (赤)、その反対に移動させるフロッパーゼ(青)、およ び両方向にかき混ぜるスクランブラーゼによって調節さ れています (図2)。二重層間のリン脂質組成の時空間 的変化は、血液凝固、免疫反応、アポトーシス(細胞死 の一種)を起こした細胞の除去、筋細胞の融合、細胞分 裂、細胞運動、精子の受精能獲得、メンブレントラフィ ックなどに関わることが示唆されていますが、詳細な調 節機構はわかっていません。私たちは、様々な細胞機能 (メンブレントラフィック、細胞運動、細胞極性形成な ど) におけるフリッパーゼ (P4-ATPase) の役割の解明 をめざしています。さらに、P4-ATPaseの変異は遺伝性 疾患などの原因になることから、脂質動態制御の観点か らの疾患発症機構の解明をめざしています。

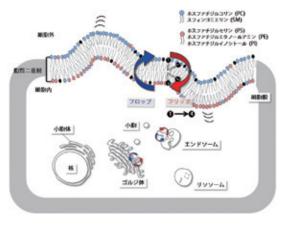


図2 生体膜の非対称性の調節

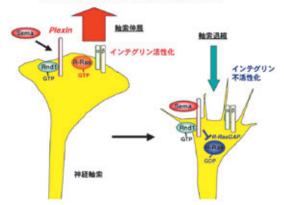
- •Katoh, Y. et al., Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap 1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J. Biol. Chem. 291, 10962-10975, 2016
- •Katoh, Y. et al., Architecture of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins. J. Cell.Sci. 128, 2351-2362, 2015
- Naito, T. et al., Phospholipid flippase ATP10A translocates phosphatidylcholine and is involved in plasma membrane dynamics. J. Biol. Chem. 290, 15004-15017, 2015
- •Takatsu, H.et al., Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J. Biol. Chem. 289, 33543-33556, 2014

神経機能制御学

教 授:根岸学 准教授:加藤裕教

研究概要

生命体は自分を取り巻く環境世界の様々な情報を知覚 し、それらの情報を処理して外界環境に応答する。この 生命体の情報処理機能、すなわち認知、記憶、思考、情 動、運動などの高次機能に脳は中心的な役割を果たして いる。神経細胞は特異な極性を持つ細胞で、その特徴的 な構造である神経突起を介して互いに接着し、複雑なネ ットワークを形成し、高次脳機能の発現を可能にしてい る。神経突起形成の機構を明らかにすることは、脳機能 の基本構造を知る上で極めて重要なことと考えている。 私たちは、特に低分子量G蛋白質、Rhoファミリーや Rasファミリーがこの神経突起形成に重要な役割を果た していると考え、その機能を解析しています。それは、 精神遅滞などの原因遺伝子として様々なRhoファミリー の活性制御分子が同定されたことから、Rhoファミリー が神経回路形成に必要であると推定されるからである。 私たちは、個々の神経伝達経路の解析というソフトとし ての脳機能研究より、脳組織の基本構造というハードと しての脳の研究を通して神経機能を支える分子基盤がわ かればと思っている。


神経回路形成に、Rhoファミリーが重要な役割を果たしており、Rhoファミリーの中で、Rhoは神経突起の退縮を、Rac、Cdc42が突起の伸長を制御していることが知られている。我々は、Rhoによる神経突起退縮作用はRhoの特異的なエフェクター、Rhoキナーゼを介して引き起こされることを明らかにした。Rhoファミリーの中で、Rho、Rac、Cdc42の機能は比較的よく研究されているが、それ以外のRhoファミリーの機能についてはほとんど不明であった。我々はRhoGがRacとCdc42を活性化して神経突起を伸長することを見いだした。さらに、RhoGの特異的なエフェクターとしてElmoを同定し、RhoGがElmo-Dock180を介してRacを活性化し、神経突起伸長を引き起こすことを見いだし、Rhoファミリー間でのネットワークの重要性を示した。

Rhoファミリーの中で、中枢神経系に主要に発現しているが、その神経機能が不明であったRnd(Rnd1、Rnd2、Rnd3)というサブファミリーが存在する。Rnd1はRhoの活性を抑制することが知られているが、Rnd2に関しては全く不明であった。我々は、Rndの神経機能の分子機構を明らかにするため、Rndに結合する分子を酵母のtwo-hybrid法を用いてスクリーニングした。その結果、Rnd2に特異的に結合する新規のエフェ

クター分子をクローニングし、Pragminと名付けた。PragminはRnd2が結合することにより、Rhoを活性化し、神経突起の退縮を引き起こすことがわかり、Rnd2とRnd1はRhoの活性を正と負に制御していることがわかった。

-方、Rnd1に結合する分子をスクリーニングした結 果、Rnd1は神経軸索ガイダンス分子、Sema4Dの受容 体、Plexin-B1の細胞内領域に結合することがわかった。 我々は、Plexinファミリーで共通によく保存されている Plexin-B1の細胞内領域がR-Ras GAPであり、細胞膜の 伸展を促進するR-Rasの活性を直接抑制することによ り、神経軸索の成長円錐の退縮を引き起こすことを見い だし、Plexin-B1という受容体が低分子量G蛋白質の GAPであるという今までに報告のない全く新しい情報 伝達機構であることを発見した。また、R-Ras GAP活 性発現には、Rnd1のPlexin-B1への結合が必須であった。 また、Sema4D-Plexin-B1と共によく研究されている Sema3A-Plexin-Aによる成長円錐の退縮にもR-Rasの活 性低下が必要であることを示し、R-Ras GAP活性が Plexinファミリーに共通の重要な機能であることを示唆 した。さらに、R-Rasは細胞の細胞外マトリックスへの 結合により活性化され、活性化されたR-Rasはインテグ リンを活性化して細胞膜の伸展を引き起こすことを明ら かにした。そして、Plexin-B1はR-Rasの活性を抑制し、 R-Rasによるインテグリンの活性化を阻害して細胞膜の 伸展を抑制し、軸索の反発作用が発揮されることがわか った。

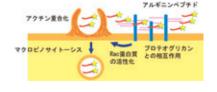
- Tanaka et al. et al. Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J. Biol. Chem. 281, 10355, 2006.
- Oinuma *et al.* Semaphorin 4D/Plexin-B1-mediated R-Ras GAP activity inhibits cell migration by regulating β_1 integrin activity. *J. Cell Biol.*, **173**, 601, 2006.
- Ito et al. Sema4D/plexin-B1 activaes GSK-3β through R-Ras GAP activity, inducing growth cone collapse.
 EMBO reports, 7, 704, 2006.
- Oinuma et al. R-Ras controls axon specification upstream of GSK-3β through integrin-linked kinase. J. Biol. Chem. 282, 303, 2007.
- Saito et al., Plexin-B1 is a GTPase activeting protein for M-Ras, remodeling dendrite morphology. EMBO reports. 10, 614(2009)
- Hiramoto-Yamaki et al. Ephexin 4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J. Cell Biol. 190, 461(2010)

生体機能化学

数 授:二木 史朗 講 師:今西 未来 助 教:河野 健一

研究概要

私たちの体は、様々な生体分子の巧妙な相互作用によって成り立っています。私たちの研究室は化学の目からの生体分子の相互作用の理解、細胞機能・遺伝子を制御する生理活性蛋白質の創出、さらには新しい薬物の治療概念の樹立を目指し、分子生物学、細胞生物学、ペプチド・蛋白質化学的手法等を用いて、以下のような研究に取り組んでいます。


1) 細胞膜透過ペプチドベクターの開発と機序:私た ちの研究室では塩基性アミノ酸「アルギニン」を多く含 むペプチドの細胞膜透過に興味を持ち、研究を進めてい ます。アルギニンペプチドをベクターとして、従来、細 胞膜を透過するのが困難であった様々な分子を細胞内に 導入できることが明らかとなってきました。この方法は、 新しい細胞機能制御法、あるいは薬物の細胞内送達法と しても注目されています。私たちの興味の一つは、「な ぜこのような塩基性ペプチドが効率よく細胞内に移行で きるのか」ということです。このようなペプチドの細胞 膜透過様式は今まで知られていない新しいものであると 考えられ、これらを明らかにすることにより、細胞内へ の物質導入に関する新しい概念が生まれるのではないか と考えています。また、これらを明らかとすることによ って、さらに効率的で選択的なベクターの開発が可能に なるのではないかと期待しています。

アルギニンペプチドを用いた細胞内への効率的な取り込みを説明する機序として、現在までに様々な説が提唱されてきています。私たちは、最近、アルギニンペプチドと細胞表層のプロテオグリカンの相互作用が細胞内のRac蛋白質を活性化し、アクチン蛋白質の重合化とマクロピノサイトーシスとよばれる特殊なエンドサイトーシスを誘導することを見いだしました。この結果は、細胞表層のプロテオグリカンとの相互作用によって「細胞表層へ濃縮されたアルギニンペプチド」が、「マクロピノサイトーシスによる細胞内への積極的な取り込みを誘導」することで、アルギニンペプチドの効率的細胞移行が行われることを示唆しています(図)。

ペプチドベクターを用いた細胞内物質導入法は、医療や薬物治療のみならず、細胞を志向する化学やナノ細胞技術など様々な分野に応用可能であり、関連領域の科学技術の発展に大きなインパクトを与え得る研究と考えられます。克服すべき問題点も多いですが、積極的に研究

を進めることにより、新しい細胞内物質導入の概念が生まれることを期待しています。

- 2) 人工転写因子による概日リズムの調節:遺伝子の 発現は、遺伝子の中の特定のDNA領域(プロモーター、 エンハンサーなど)に「転写因子」と呼ばれる蛋白質が 結合することによって調節されています。亜鉛フィンガ 一やTALEは、転写因子のDNA配列選択的な結合を担う 代表的な蛋白質構造モチーフです。このデザインにより、 さまざまなDNA配列を認識可能な亜鉛フィンガー蛋白 質やTALEが作製でき、さらに、これを基に、従来にな い機能を有する人工転写因子の創出が期待出来ます。こ のような人工転写因子は生命現象の解明や遺伝子治療の ツールとして大変有用です。私たちは、亜鉛フィンガー 蛋白質やTALEのDNA結合様式の理解を深め、人工転写 因子設計に向けての知見を得るとともに、創出した人工 転写因子を用いて、生命現象の解明への応用に取り組ん でいます。特に現在は、「なぜ生物は24時間のリズムを 刻むのか?」という、生物にとっての基本現象に対する 分子レベルでの理解を目指しています。
- 3) 人工受容体型チャネル蛋白質の設計:遺伝子工学 を用いた蛋白質の改変では生体内に存在する20種類の 天然型のアミノ酸しか用いることは出来ませんが、化学 合成したペプチドを用いれば様々な非天然アミノ酸や官 能基を導入した分子の調製が可能です。これらを利用し て、天然の蛋白質ではできない機能を持ったペプチドや 蛋白質を創出することを目指しています。たとえば、受 容体蛋白質はそのリガンドと特異的に結合し、構造変化 することにより、細胞内部にその情報を伝えます。この 機能を短いペプチドで実現することが出来れば、その原 理に基づく「新しい情報伝達素子」の創製が期待出来ま す。また、ペプチドで発現する機能と蛋白質のそれとを 比較することにより、従来とは異なる角度からの蛋白質 の構造と機能の理解が深まることも期待されます。私た ちは最近、膜外構造変化が膜電流の増加を誘起する人工 受容体型チャネルの創製に初めて成功しました。研究室 では今、この概念に基づく新しいセンサー系の開発や天 然の膜蛋白質の構造と機能の解明を目指し、研究を進め ています。

アルギニンペプチドと細胞表層のプロテオグリカンとの相互作用により、 アクチン重合とマクロピノサイトーシスという特殊なエンドサイトーシス が誘導され、細胞内への取り込みが促進される。

- ■Kawaguchi et al. Syndecan-4 Is a receptor for clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides. Bioconjug Chem 27, 1119, 2016.
- Azusa et al. Controlling leucine-zipper partner recognition in cells through modification of a-g interactions. Chem Commun 50, 6364, 2014.
- ●Tsuji et al. Creating a TALE protein with unbiased 5'-T binding. Biochem Biophys Res Commun 441, 262, 2013.

薬品動態制御学

教 授:橋田充 講 師:樋口ゆり子

研究概要

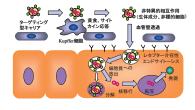
ドラッグデリバリーシステム(DDS)は、薬物の体内動態を精密に制御することによって薬物治療の最適化を図る投与技術の新しい概念で、バイオ医薬品や遺伝子医薬品に代表される将来の薬物治療を支える基盤技術として、現在、創薬科学の重要分野のひとつとされています。薬品動態制御学分野では、高分子特性を利用したターゲティングシステムや、遺伝子デリバリーシステムの開発に成果を挙げ、現在は情報科学的手法に基づく動態制御や動態予測法の開発も進めています。以下、現在遂行している具体的な研究課題について概説します。

1) 遺伝子医薬品の細胞特異的ターゲティング法開発

治療に応用可能な生理活性タンパク質をコードしたプ ラスミドDNAや病因遺伝子発現を阻害するオリゴヌク レオチドで治療を行う治療法が、癌やエイズなどの難治 性疾患や種々の先天性疾患などの画期的治療法として期 待されています。こうした遺伝子レベルでの治療を実現 するためには、遺伝子医薬品を標的細胞の核や細胞質な ど特定の細胞内部位に効率よく送り込むことが必要で す。しかしながら、遺伝子・核酸医薬品は核酸分解酵素 による分解を受けやすく、負電荷を持つ水溶性高分子で あり細胞内に取り込まれにくいためそのまま投与しても 十分な効果が期待できません。こうした問題を解決する ため、我々は標的細胞に存在するレセプターにより特異 的認識を受け効率的に取り込まれるリガンドでカチオン 性リポソームやポリマーを修飾した新規キャリアを開発 しました。また、本ターゲティングシステムを用し、癌や炎 症性疾患に対する遺伝子治療法の開発を行っています。

2) タンパク質医薬品の体内動態制御法開発

種々の生理活性タンパク質が医薬品の候補として注目されていますが、生体内において生理活性タンパク質は、タンパク分解酵素の働きや産生された抗体との相互作用によって失われ、さらに尿中排泄や肝臓など細網内皮組織による取り込みによって消失するため、循環血液中における滞留時間はしばしば極めて短くなっています。また、標的作用部位への移行性に関しても、十分な特異性を示す例は多くありません。そこで動態制御のみならずこうした多くの問題点を同時に解決する手段として、化学修飾によるタンパク質の機能改善が期待されています。我々はスーパーオキシドディスムターゼやカタラー


ゼといった活性酸素消去酵素を種々の方法で化学修飾することにより、その体内動態を厳密に制御し、血中滞留型、肝細胞表面吸着型、肝実質細胞集積型、肝非実質細胞集積型などの動態特性を付与することに成功しました。また、これら活性酸素消去酵素誘導体を用いて、活性酸素が関与する癌転移に対する新規治療法の開発を行っています。

3) ナノテクノロジーによる新規DDSキャリア開発

我々は、細胞選択性など高度な機能を付与した高分子コンジュゲート、エマルション、リポソームなどのターゲティング型DDSの開発を推進してきました。しかしながら、これらDDSキャリアは依然サイズや構造の不均一性などの問題点を有し、さらにナノテクノロジーなどの新しい方法論を用いたDDSキャリアの開発が望まれています。近年、規則的で高度に分岐した分子鎖構造を持つナノメートルスケールの大きさの球状分子、デンドリマーが開発され、構造や物理化学的性質等を分子レベルで厳密に制御することができることから注目を集めています。我々は安全性に優れたデンドリマーを開発するため、アミノ酸のみで構成され、また、優れた薬物担持能や癌特異的集積性などを示すよう分子設計された新規アミノ酸デンドリマーを開発し、現在、癌診断・治療などへの応用を目指して研究を進めています。

4) 情報科学的アプローチによる薬物動態解析

近年、医薬品探索研究において、ロボットを用いた化合物合成および薬理スクリーニングが主流となり、多くの候補物質が見つかってきます。しかしながら、その化合物を投与しても、体内に吸収されないなど不適切な薬物動態を示すものがほとんどであり、結果として医薬品につながりません。コンピュータによるスクリーニングにより有効と思われる化合物だけを合成することができれば、非常に効率的かつ効果的な医薬品探索研究が遂行できるようになります。そこで、テキストマイニング技術により薬物の体内動態に関する情報を膨大な情報を収集する技術を開発するとともに、化合物の化学構造と薬物動態特性との関係を解析したり、得られた大規模情報を可視化するインターフェースを開発することによってデータマイニングを行う研究を行っており、創薬支援のための基礎技術開発および情報提供を目指しています。

遺伝子医薬品の細胞特異的ターゲティング法開発

遺伝子医薬品を標的となる細胞において効率的に発現させるためには、非特異的相互作用の回避、血管壁透過改善、標的細胞における認識、エンドソームから細胞質への放出、核移行、転写などの各過程の制御が必要である。また、マクロファージへの遺伝子医薬品の取り込みに基づくサイトカイン応答により副作用が引き起こされる可能性がある。従って、これら問題を解決できる多機能型遺伝子導入キャリアの開発は、難治性疾患に対する遺伝子治療を実現する上で期待されている。

- •Long-term in vivo gene expression in mouse kidney using φC31 integrase and electroporation. Otani Y, Kawakami S, Mukai H, Fuchigami Y, Yamashita F, Hashida M. Journal of Drug Targeting. 23(5): 427-435, 2015
- Evaluation of the potential of doxorubicin loaded microbubbles as a theranostic modality using a murine tumor model. Abdalkader R, Kawakami S, Unga J, Suzuki R, Maruyama K, Yamashita F, Hashida M. Acta Biomaterialia. 19: 112-118, 2015
- •Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Baba H, Takahara J, Yamashita F, Hashida M. Pharmaceutical Research. 32(11): 3604-3617, 2015

薬品作用解析学

准教授: 久米 利明 助 教: 泉 安彦

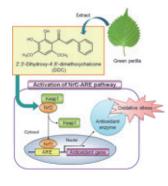
客員教授:赤池 昭紀

研究概要

アルツハイマー病、パーキンソン病などの難治性神経 疾患および脳虚血による高次脳機能障害の疾患は、脳内 の特定の部位のニューロン群がアポトーシスおよびネク ローシスの過程により細胞死を起こし、ニューロン数が 著明に減少することに特徴があります。薬品作用解析学 分野では、脳疾患モデル動物を用いたin vivo実験系、 初代培養ニューロンをはじめとするin vitro実験系など の手法を用いて、神経変性疾患、脳虚血に伴うニューロ ン死の機序の解明およびニューロン死を制御する動植物 由来低分子量化合物の探索研究を遂行しています。さら にドパミンニューロンを中心に神経再生を目指した研究 も進めています。これらの研究により、神経変性疾患の 予防・治療を目的とした薬物の創製に寄与するだけでな く、高齢化社会におけるクォリティー・オブ・ライフの 改善を目的とした医療に大きく貢献することが期待され ます。以下に、現在遂行している具体的な研究課題につ いて概説します。

1) 神経変性疾患の病態形成機構の解明およびその予防・治療薬開発に関する研究

アルツハイマー病の発症においてアミロイドβタンパ ク質(Aβ)が重要な役割を果たしているという「アミ ロイド仮説」が認知されていますが、その毒性発現メカ ニズムについては未だ不明な点が多く残されておりま す。本研究室では、ABの立体構造のうち神経毒性を発 現しやすい「毒性コンホマー」に注目し、in vitro実験 系における神経細胞毒性ならびに酸化ストレスにおけ る、 $A\beta$ の毒性コンホマーの役割を調べました。 $A\beta$ の 毒性コンホマーはGlu22付近で「毒性ターン構造」を取 ることから、Glu22をターン形成しやすいE22P-ABあ るいはターンを形成しにくいE22V-ABを用いました。 これらを用いた検討により、ABの神経細胞毒性ならび に酸化ストレス誘導において、Glu22付近でターン構造 を取る毒性コンホマーは重要な役割を果たしていること が強く示唆されました。現在、in vivoにおけるA β 毒性 コンホマーの作用検討などアルツハイマー病の発症メカ ニズムの解明に向けた研究を進めています。


2) ニコチン性アセチルコリン受容体に関する研究

大脳皮質ニューロンにニコチンを長時間投与することでグルタミン酸神経毒性やA β 毒性に対して保護作用を発現すること、さらにドネペジルをはじめとする中枢作用型のアセチルコリンエステラーゼ阻害薬がニコチン受容体刺激を介して神経毒性を顕著に抑制することを明らかにしてきました。そこで、ニコチン受容体刺激によるニューロン保護効果の詳細な機序についての検討を行っています。

3) 食品由来化合物による神経保護に関する研究 神経変性疾患を克服するためには、発症の段階ではす でにニューロン死が起こっていることから、予防医学的な観点からの対応が必要です。さらに、神経変性疾患は数年以上の長い期間にわたって症状が徐々に進行することから、薬物治療のみだけではなく神経保護効果をもつ食品を補助的に用いることにより、進行の緩徐化を図ることも重要になると考えられます。当研究室では、認知症などの老齢化リスクへの対応として、神経保護、再生などの作用により脳機能を保護する効果をもった食品由来化合物を探索し、解析しています。これまでに、青ジソから新規機能性成分としてDDCの単離に成功し、DDCは細胞内の抗酸化酵素を誘導することを明らかにしました。現在、青ジソを含めたいくつかの食品素材由来の化合物による神経保護作用について研究を進めています。

4) ドパミンニューロンの生存および再生に関する研究

中脳黒質ドパミンニューロンが選択的に変性・脱落す るパーキンソン病において、我々は、ドパミンニューロ ンが不安定で自動酸化を起こすドパミンを神経伝達物質 として含有するため、他のニューロンより脆弱であるこ とを報告しました。そこで、ドパミンの異常な酸化を制 御する化合物をドパミン神経保護薬の候補として探索し ています。また、パーキンソン病では、細胞におけるタ ンパク質品質管理の不全が示唆されています。細胞内の タンパク質分解に関わるプロテアソームやオートファジ 一がドパミンニューロン死に与える影響を解析し、新た な神経保護メカニズムを検討しています。さらに、失わ れた黒質-線条体ドパミン神経投射の再生を目指した研 究も進めています。ドパミンニューロンが線条体に軸索 を伸展させ神経支配するメカニズムを独自の実験手法で 検討しています。本研究から得られる知見は、幹細胞か ら分化したドパミンニューロンの細胞移植療法に応用で きるのではないかと考えています。

青ジソ由来化合物**DDC** の細胞保護作用機序の 模式図

青ジソから新規機能性成分 としてDDCを抽出・単離 した。DDCは、生体内抗 酸化システムであるNrf2-ARE経路を活性化する。転

写因子であるNrf2は核内移行し、抗酸化遺伝子のプロモーター領域に存在する抗酸化応答配列(ARE)に結合することで、抗酸化酵素を発現誘導する。DDCを処置した細胞に酸化ストレスに対して抵抗性を獲得する。

- •Izumi *et al.* Endogenous dopamine is involved in the herbicide praquat-induced dopaminergic cell death. *Toxicol Sci.* **139**, 466, 2014
- •Wakita et al. Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology. 77, 39, 2014
- •Izuo *et al.* Toxicity in rat primary neurons through the cellular oxidative stress induced by the turn formation at positions 22 and 23 of Aβ42. *ACS Chem Neurosci.* **3**, 674, 2012
- Izumi *et al.* Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis). *Free Radic Biol Med.* **53**, 669, 2012

臨床薬学教育

准教授: 米澤 淳

研究概要

これまでに多くの医薬品が開発され、薬物治療の発展に大きく貢献してきました。他方で、日本の医療は、高齢化、医療費の高騰、疾患や医薬品の複雑化、難病・希少疾患の増加など様々な課題を抱えています。近年、遺伝子情報、生活環境やライフスタイルにおける個々人の違いを考慮して疾病予防や治療を行う "Precision Medicine" が注目されています。臨床薬学教育分野では、実臨床の薬物治療で発見される課題を解決するための科学的基盤を構築するリバース・トランスレーショナルリサーチと、基礎的研究成果に基づいて新しい薬物治療を開発するトランスレーショナルリサーチを推進し、それぞれの患者に最適な医療を実現する個別化治療の開発を目指しています(図1)。以下に、当分野で展開している研究テーマについて概説します。

1) 抗体医薬の個別化療法を目指した臨床薬理学的研究

薬物治療における抗体医薬の重要性が近年に高まっています。他方、抗体医薬は50種類程度しか承認・販売されていないにもかかわらず、2014年医薬品売上高TOP10の半数を占めるなど、医療経済学的な点が社会問題となっています。すなわち、臨床効果を予測するバイオマーカーを開発し、個別化医療を実現することが急務となっています。

我々は、TOF-MSを用いた抗体医薬の構造解析法を確立するとともに、Flow Cytometryや次世代Flow CytometryであるCyTOFを用いた免疫細胞活性化マーカーの革新的評価手技を用いて、薬物動態(PK)および薬力学(PD)解析による個別化療法の開発を行っています(図2)。細胞や動物実験だけでなく、京都大学医学部附属病院の診療科との共同研究より臨床研究も鋭意進めています。さらに、抗体医薬の効果を増強する医薬品を探索するにドラッグ・リポジショニングにもチャレンジしています。本研究成果は、抗体医薬の適正使用に繋がるとともに、医療費抑制やバイオ後続品等の抗体医薬の開発促進にも貢献するものと考えています。

2) トランスポータを対象とした薬物動態学および薬理 学研究

2-1) 薬物の副作用発現に関わる腎有機カチオントランスポータの関与

薬物の副作用は薬力学的な要因だけでなく、薬物動態学的要因にも起因します。我々は腎臓の有機カチオントランスポータOCT2(取込型)とMATE(排出型)に着目して研究を行ってきました。その成果として、MATEファミリーに属するヒト腎特異的トランスポータMATE2-Kの同定に成功しました。また、シスプラチンの腎特異的毒性発現やメトホルミンによる乳酸アシドーシス誘発に、OCTの発現分布と基質認識特性、ならび

にMATEの機能変化が重要な因子となることを明示してきました。これらトランスポータが寄与する副作用発現のメカニズム解明は、様々な病態の患者における薬剤選択に有用な情報になるとともに、創薬における副作用回避法の立案にも繋がると考えています。

2-2) 新規リボフラビントランスポータRFVTの同定と希 少疾患BVVLSの病態解明

我々は哺乳類で初めてのリボフラビントランスポータ RFVT1 (旧名称RFT1) およびRFVT2 (旧名称RFT3) の同 定に成功してきました。また、海外との共同研究により 本遺伝子欠損により、希少疾患であるBrown-Vialetto-Van Laere syndrome(BVVLS)を発症することを見い出 しました。BVVLSは筋緊張低下や呼吸不全を引き起こす 疾患であるが、そのメカニズムの詳細は不明でした。症 例で見つかった遺伝子変異の機能解析や動物実験を実施 することで、RFVT2欠損では血中リボフラビン濃度が不 変、RFVT3欠損ではリボフラビン濃度低下を来たし、重 症度の程度の異なるBVVLSの病態を呈することを明らか にしました。この研究成果に基づき、それぞれの遺伝子 疾患がBVVLS2 (OMIM# 614707)、BVVLS1 (OMIM# 211530) として、ヒトの遺伝性疾患データベース OMIMに登録されました。現在、ノックアウトマウスを 作製してBVVLSの病態解明と治療法の開発を進めていま

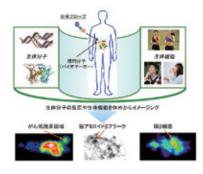
図1 医薬品の体内動態と薬効・毒性に関する基礎と臨床



図2 個別化療法を目指した抗体医薬の臨床薬理学的研究

- •Yoshimatsu H, Yonezawa A, Yamanishi K, Yao Y, Sugano K, Nakagawa S, Imai S, Omura T, Nakagawa T, Yano I, Masuda S, Inui K, Matsubara K. Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice. Sci Rep 6:27557, 2016
- Yonezawa A, Dutt S, Chester C, Kim J, Kohrt HE. Boosting Cancer Immunotherapy with Anti-CD137 Antibody Therapy. Clin Cancer Res 21:3113-3120, 2015
- Yoshimura K, Yano I, Kawanishi M, Nakagawa S, Yonezawa A, Matsubara K. Pharmacokinetics and pharmacodynamics of mycophenolic acid in Nagase analbuminemic rats: Evaluation of protein binding effects using the modeling and simulation approach. *Drug Metab Pharmacokinet* 30:441-448, 2015

病態機能分析学


数 授:佐治 英郎 准教授:小野 正博 助 教:渡邊 裕之

研究概要

生体は多くの分子が相互作用することによって、多様 な機能を営んでいます。したがって、生体の機能を解明 するためには分子レベルでの相互作用の解析が必要で す。病態機能分析学分野では、光量子技術を用いること により、生きて機能している状態(インビボ)の生体を 対象として、その中で起こっている分子の相互作用を空 間的・時間的に分子レベルで体外からリアルタイムで可 視化して捉える生体機能解析法(分子イメージング法) を開発し、それを基盤として生体機能や病因を解明し、 病態の特性に基づく臨床診断・治療薬を開発する研究を 行っています。この研究活動によりもたらされる成果は、 ゲノム情報と生体機能情報を結びつけて総合的に生体を 解明するために寄与するとともに、現代医療の主要なテ マである脳疾患、心疾患、癌などの身体の機能変化に 基づく内因性疾患の解明と診断・治療薬開発にも貢献し ています。以下、現在遂行している具体的な研究課題に ついて概説します。

1) 生体機能、病態の仕組み、薬物作用機序を分子レベルでインビボ解析するための分子イメージング法の 開発

生体内では常に分子が相互作用していろいろな反応を 起こし、動的に変化しています。生体機能を解明するた めに、従来は対象分子の反応を試験管や細胞を用いて解 析してきましたが、生体という、多くの分子反応が互い に関連して常に変化している場合には、従来の解析に加 え、新たにインビボでの分子反応の空間的・時間的な解 析が必要です。そこで、循環・代謝機能、微小組織環境、 神経伝達機能などの生体機能を対象として、放射線、光 をはじめとする光量子技術を用いて、分子反応をインビ ボで定量解析するための新規生体機能解析法、分子イメ ージング法の開発を行っています。具体的には、新しい 高感度・高解像力の生体イメージング装置の開発、脳、 心筋、腫瘍、膵臓(糖尿病)などを対象とした高感度機 能分析試薬である分子プローブの設計・開発、生体機能 のインビボ定量解析法の開発に関する研究を進めていま す。例えば、複数の神経伝達機能のインビボ相互作用の 分子イメージング、アルツハイマー病で起こる β-アミ ロイドタンパク質およびタウタンパク質の凝集・蓄積過 程の分子イメージング、薬物による変化と治療効果の定 量評価に関する研究を行っています。また、構造-活 性-分布相関の解析に基づき、神経伝達物質や薬物のト ランスポーターやレセプターの分子イメージングに有効 な放射性分子プローブを開発しており、その一部はヒト 脳でのイメージングや受容体密度の定量解析への応用に

も成功しています。また、糖尿病の病態解明、早期発見などを目的として、膵臓 β 細胞の変化を評価できる分子プローブの開発研究も行っています。さらに、分子に光を照射した場合に発する蛍光を測定してイメージングする光イメージング用蛍光分子プローブ、特に生体内で特異的な分子との反応やある組織や細胞が置かれている特異的環境下で蛍光を発する分子プローブの開発研究も行っています。これは光の透過距離に制限があるので表面から浅い部分が対象となりますが、簡便性やリアルタイム測定に優れるイメージング法として期待されています。

また、生理活性に関与する部位と放射線、蛍光などの 検出シグナル放出部位とを一つの分子内に具備する機能 ユニットカップリング型化合物という分子設計概念の基 に、生理活性ペプチドやタンパク質を母体化合物とする 分子プローブの開発に関する研究も進めています。

2)病態の特性に基づく機能性画像診断薬および放射性 治療薬の創製

臨床画像診断は抗生物質の利用などとともに現代医学 を変えたもののひとつといわれています。この画像診断 には種々の手法が用いられていますが、放射線 (γ線) の高い物質透過性を利用して、放射性化合物を体内に投 与し、そこから放出される放射線を検出して画像とする 核医学はその一つで、臓器や組織の機能診断に優れた方 法として用いられています。核医学画像診断に用いられ る放射性化合物は放射性医薬品と呼ばれ、これには疾患 を特異的に高感度で精度高く診断できる性質を有することが求められています。そこで、脳や心筋の疾患、腫瘍 等に特異的な微小組織環境の変化や発現タンパク質を標 的とした、病態の特性に基づく機能性放射性医薬品の創 製とその臨床利用に関する研究を行っています。これは 分子イメージング研究の成果を臨床診断に展開する研究 です。例えば、脳梗塞や心筋梗塞の主な原因である動脈 硬化不安定プラークの診断における18F標識グルコース 誘導体プローブの有効性を基礎的な検討から明らかにし ました。また、薬物療法や放射線治療に対する抵抗性を 示す腫瘍の低酸素領域をイメージングできる分子プロ-ブの開発研究も行っています。また、放射線(β線)の 細胞障害性を利用して、診断薬の開発で得られた化合物 の部位特異的集積性に関する研究成果に基づいて、細胞 障害性の高い放射性核種を構成元素として含有する、腫 瘍や骨疼痛の内用放射線治療薬(内部照射薬)の開発も 進めています。これは手術や化学療法の適応が難しい腫 瘍や骨疼痛緩和の治療への応用性が期待されています。

3) 微量金属元素の生体作用の解明およびそれを基礎と する生理活性金属錯化合物の創製

生体内には微量金属元素が存在し、それらは生体維持や様々な生理機能に必須であり、また病態にも関与していると言われています。例えば、脳虚血、パーキンソン病、アルツハイマー病、糖尿病などに亜鉛、銅、鉄などの金属元素が関与している可能性が示唆されていますが、その実体や機序についてはほとんど不明です。そこで、亜鉛を中心として、その生理機能とのかかわりの解明、生体内での金属イオンやキレート化合物の体内動態の化学的制御に関する基礎的検討を進めています。これらの研究は、医薬品開発に新しい領域を開くことが期待されています。

- •Cui M, et al., Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J. Am. Chem. Soc., 136 (9), 3388-3394 (2014).
- Shimizu Y, et al., Micelle-based activatable probe for in vivo near-infrared optical imaging of cancer biomolecules. Nanomedicine, 10 (1), 187-195 (2014).
- •Yoshimura M, et al., Feasibility of amylin imaging in pancreatic islets with β-amyloid imaging probes. Sci. Rep., 4, 6155 (2014).

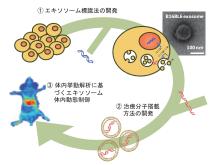
病態情報薬学

教 授:髙倉 喜信 准教授:西川 元也 助 教:髙橋 有己

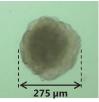
研究概要

疾病治療のために生体に投与される「モノ」としての "くすり"と、投与される側の「ヒト」との関わりを、生物薬剤学・薬物動態学・ドラッグデリバリーシステム などの学問的バックグランドに基づき探究し、"薬物投与"の最適化を目標に研究活動を行っています。以下に 現在行っている研究課題について概説します。

- 1) 遺伝子治療・DNAワクチン療法の最適化を目指した核酸医薬品開発:遺伝子治療やDNAワクチン療法の実現には、遺伝子産物であるタンパク質の体内動態制御が必要です。インターフェロン遺伝子を利用した検討では、長期発現が可能なプラスミドの開発に成功し、これが癌やアトピー性皮膚炎治療に有効であることを実証しました。また、構造改変型タンパク質を設計し、遺伝子導入・発現後のタンパク質体内動態制御による治療効果増強・副作用軽減にも取り組んでいます。
- 2) 核酸ナノデバイス・ハイドロゲルの開発:CpGモ チーフを含むDNAは、TLR9を介してサイトカイン産生 を誘導することから、癌や自己免疫疾患、アレルギー疾 患などに対する治療薬としての応用が期待されます。 我々は、相補鎖と2重鎖を形成する核酸の機能を巧みに 利用することで、天然には存在しないユニークな構造を 有する多足型構造核酸(polypodna)を構築すること に成功しました。これは、中心から複数の足(pod)が 突き出る形の分岐型DNAであり、このような構造体と することでCpGモチーフの免疫活性を飛躍的に増強で きることを明らかにしています。さらにこの polypodnaを連結することで、DNAデンドリマーや DNAハイドロゲルの調製にも成功しました。DNAハイ ドロゲルは内包した薬物を徐放できることから、現在、 薬物・免疫治療システムとしての開発に取り組んでいま す。



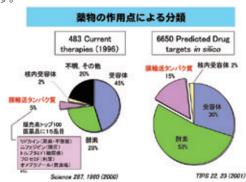
Polypodna およびDNAデンドリマーの推定3次元構造


自己ゲル化核酸の自発的形成 (左) およびマウス皮内投 与後の写真(中)、内部走査型電子顕微鏡像(右).

3) Exosomeを利用した疾患治療システムの開発: Exosome (エキソソームあるいはエクソソーム) は、 細胞から分泌される粒子径100 nm前後の、脂質二重膜から形成される小胞です。Exosomeはタンパク質やDNA・RNAの内因性のデリバリーキャリアとして働くことから、これらの分子のデリバリーシステムとなることが期待されています。我々は、exosomeを利用したデリバリーシステムの開発を目的としてexosomeの体内動態解析法の構築と、それを利用した体内動態制御法の開発に取り組んでいます。これまでに、exosomeの高感度標識法の開発により体内でのexosomeの可視化に成功するとともに、exosomeの体内動態がマクロファージにより大きな影響を受けることを見出しています。

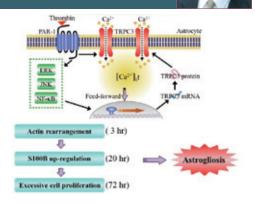
4) 高機能細胞治療システムの開発:近年、人工多能性幹細胞を始めとする様々な細胞を分化・培養する技術が進歩したことを受け、細胞を投与することによる疾患治療が期待されています。我々は、次世代治療に利用可能な高機能細胞治療システムの開発に向けて検討を進めています。投与細胞の生体内での残存性向上を目的とした検討においては、合成小分子細胞接着分子を利用することで、移植細胞の生存期間を延長し、皮膚損傷の治癒促進に成功しました。また、マイクロウェルを利用した細胞スフェロイド作製技術を確立し、移植細胞機能の向上を実現するとともに、インスリン産生細胞スフェロイドが糖尿病モデルマウスの治療に有効であることを見出しています。

PDMS製マイクロウェル断面図の顕微鏡像(左)およびインスリン産生細胞スフェロイドの顕微鏡像 (右).

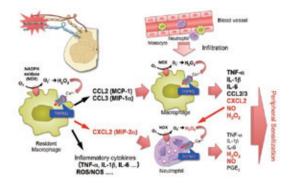

- •Umeki et al. Induction of potent antitumor immunity by sustained release of cationic antigen from a DNA-based hydrogel with adjuvant activity. Adv Funct Mater 25, 5758-5767, 2015.
- ■Yamashita et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 98, 1-8, 2016.
- •Kusamori et al. Increased insulin secretion from insuiln-secreting cells by construction of mixed multicellular spheroids. Pharm Res 33, 247-256, 2016.

生体機能解析学

教 授:金子周司 准教授:白川久志 特定助教:永安一樹


研究概要

現在使用されている「薬」は、受容体(45%)をターゲットとしているものが最も多く、続いて酵素(28%)となっており、イオンチャネル・トランスポータなどの膜輸送タンパク質に作用する薬は全体の5%と割合こそ低いものの、作用が強力で切れが良く実際によく使われている薬が多いことが特徴です。一方、ヒトゲノムの中に薬の作用点となりうるタンパク質はある推計によると6650種類、その内訳は受容体が3割、酵素が5割、そして膜輸送タンパク質は15%もあり(下図)、これは膜輸送タンパク質が創薬標的として大いに開拓の余地が残されている生体分子であることを示しています。そこで生体機能解析学分野では「膜輸送タンパク質」をキーワードに、特に中枢神経系に存在するイオンチャネル・トランスポータに焦点をあて、様々な研究を展開しています。


1) 脳血管疾患の病態に関与するTRPチャネルに関する 研究

脳梗塞や脳出血を含む脳血管疾患は、過剰な神経伝達 物質の遊離や活性酸素種の発生、過剰な炎症性応答によ って神経細胞死や異常なグリア細胞の活性化が引き起こ され、結果として重度の脳機能障害が起こる病気です。 TRP(transient receptor potential)チャネルは細胞内外 の様々な物理化学要因(熱、浸透圧、酸化還元状態、膜 脂質成分)によって開口が制御される非特異的カチオン チャネルファミリーであり、感覚受容のシグナル伝達を 担うことが明らかになっていますが、近年ではグリア細 胞や免疫細胞などの非興奮性細胞においても細胞機能の 発現に重要な役割を果たしていると想定されています。 そこで本分野では、脳血管疾患の病態に関与するグリア 細胞の異常活性化に着目し、トロンビンによるアストロ サイト活性化におけるTRPC3の病態生理的役割について 解析してきました(右図)。現在は、ミクログリアやオ リゴデンロサイトも含めたグリア細胞機能におけるTRP チャネルの役割について、遺伝子改変動物も用いながら 病態モデルを作製して研究を進めています。

2) 慢性疼痛に関与するTRPチャネルおよびトランスポー 夕に関する研究

感覚神経の傷害や周辺の炎症性病変によって惹起される慢性疼痛は、従来の鎮痛薬が奏功しない例も多く、その成立や維持機構に関しては不明な点が多く残されています。本分野では、特にグリア細胞や免疫系細胞とニューロンとの間に起こる相互連関に着目して研究を進めており、アストロサイトのグルタミン酸トランスポータGLT-1の役割や、単球/マクロファージおよびミクログリアに発現するTRPM2の役割(下図)について研究しています。また、オキサリプラチンなどの抗がん剤の重大な副作用のひとつである末梢神経障害におけるTRPチャネルの関与について解析を進めています。

3) 抗うつ薬・依存性薬物の作用メカニズムに関する研究

覚せい剤、麻薬性鎮痛薬、MDMAなどの新型麻薬などの依存性薬物、あるいはSSRI、SNRI、三環系抗うつ薬といった抗うつ薬の慢性的作用機構に関して、中脳皮質辺縁脳切片共培養系および縫線核含有中脳切片培養系を用いて、それらの長期処置によりドバミン神経およびセロトニン神経の活動亢進が生じることをin vitroで明らかにできるモデルを確立し、その詳細なメカニズムの解明を進めています。

- •Munakata et al., Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44, 1981-1987 (2013)
- Nagayasu et al., Chronic effects of antidepressants on serotonin release in rat raphe slice cultures: high potency of milnacipran in the augmentation of serotonin release. Int J Neuropsychopharmacol. 16, 2295-306 (2013)
- That is, Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain. 8, 55 (2012)
- Haraguchi et al., TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci. 32, 3931-3941 (2012)

医療薬剤学

教 授:松原和夫 准教授:中川貴之

講 師: 今井 哲司 助 教: 大村 友博、中川 俊作

研究概要

当研究室の目標は、効率的で安心かつ質の高い医療に 貢献するため、医薬品適正使用や薬剤業務の科学的基盤 を構築することにあります。我々はこれまで、薬物の体 内動態は医薬品の有効性・安全性と密接に関連すると考 え、薬物動態制御因子である薬物トランスポータに焦点 を当てた基礎研究及び臨床研究を展開してきました。ま た最近では、抗がん剤による副作用発現メカニズムの解 明とそれに基づく臨床応用を目指し研究を進めていま す。以下に、現在遂行している主な研究課題を概説しま す。

- 1) 痛み・しびれの発生とその慢性化機構の解明:痛みは本来、生体警告系として重要な感覚ですが、現在の鎮痛薬に抵抗性を示し、長期間持続する慢性痛や難治化する痛みが存在します。その多くは患者のQOLを下げる不要な痛みで、これらは積極的に治療すべきと考えられます。一方、しびれは正座の直後など誰もが経験する感覚ですが、異常知覚などを伴った病的なしびれは治療の対象となります。しかし、これらの病態には未だ不明な点が多く、治療薬も完全ではありません。我々は、痛みやしびれがどのように発生し、また、慢性化・難治化するのか、それらの機序を解明しようと試みています。特に、感覚神経に発現する侵害受容器(多くはTRPチャネル)による痛み・しびれの発生やその変調、中枢神経と免疫系細胞との相互作用による神経炎症応答に着目し研究を進めています。
- 2) 抗がん剤による副作用の発現機序解明とその予防・治療法確立に向けたリバーストランスレーショナルリサーチ:がん化学療法における抗がん剤の使用により、様々な副作用が高頻度に出現しますが、十分な対応策が確立されておらず臨床現場では切実な問題となっています。我々は、このような抗がん剤治療の用量規定因子ともなる副作用の発現機序を分子/神経レベルで研究し、予防・治療法を確立する、いわゆるリバーストランスレーショナルリサーチを目指しています。具体的には、シスプラチンによる腎毒性、EGFR阻害薬(ゲフィチニブ、エルロチニブ)による間質性肺炎、タキサン系、ビンカアルカロイド系、白金製剤、プロテアソーム阻害薬による末梢神経障害、ドキソルビシンや経口分子標的薬にスニチニブ、ソラフェニブ、レゴラフェニブ)などで認められる手足症候群について、培養細胞および動物モ

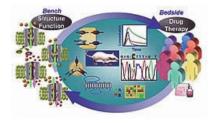


図1. 薬物トランスポータ研究~from bench to bedside \sim

- デルを用いて検討しています。
- 3) 薬物動態に基づく効果・副作用発現機構に関する基礎・臨床研究:薬物の体内動態は、吸収・分布・代謝・排泄の4つの過程からなり、薬物トランスポータなどの薬物動態関連因子によって制御されています。我々は、薬物の効果・副作用発現機構に関する臨床研究および基礎研究を行っています。白金系抗がん薬シススプラチンや糖尿病治療薬メトホルミンの効果・副作用発現は有機カチオントランスポータの基質認識特性や組織分布により規定されていることを明らかにしてきました。さらに、新規リボフラビントランスポータRFVTを同定し、その変異が希少疾患の原因となることを国際共同研究で報告しました。薬物動態研究に加えて、希少疾患の発症機構や治療薬の開発にも取り組んでいます。
- 4) パーキンソン病発症機構の解明と新規治療法の探索:パーキンソン病は振戦、固縮、無動などの運動症状を伴う神経変性疾患です。様々な治療薬が開発されていますが、根本的な治療法が存在しません。そこで当研究室ではパーキンソン病発症機構の解明、そして新規作用機序に基づいたパーキンソン病治療薬の探索に焦点を当て研究を行っています。最近では、抗てんかん薬ゾニサミドやオキシカム系NSAIDsが、パーキンソン病モデルにおける細胞死を抑制することも見出しており、現在はこれらの分子も含めて研究を行っています。
- 5) 薬効・副作用の発現を予測するバイオマーカーに関する研究:移植医療に必須の免疫抑制剤タクロリムスやシクロスポリンは、個体間・個体内変動が大きいため、投与設計の難しい薬物として知られています。我々は、これら免疫抑制剤の薬効・薬物動態関連因子の遺伝子解析、生化学的解析、母集団薬物動態解析を通して、個別化免疫抑制療法の開発を進めています。このような研究により得られた成果は、現在生体肝移植後のタクロリムス免疫抑制療法に活用されています。また近年では、薬物治療に伴う腎障害発現を予測できるバイオマーカーの探索にも注力しています。

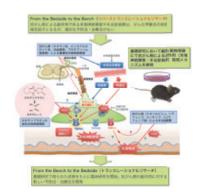


図2. 抗がん剤の副作用に関するリバーストランスレーショ ナルリサーチ

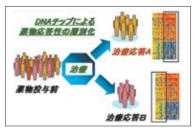
- Yoshimatsu H, Yonezawa A, Yamanishi K, Yao Y, Sugano K, Nakagawa S, Imai S, Omura T, Nakagawa T, Yano I, Masuda S, Inui K, Matsubara K: Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice. Sci Rep 6: 27557 (2016)
- So K, Tei Y, Zhao M, Miyake T, Hiyama H, Shirakawa H, Imai S, Mori Y, Nakagawa T, Matsubara K, Kaneko S: Hypoxia-induced sensitization of TRPA1 in painful dysesthesia evoked by transient hindlimb ischemia/reperfusion in mice. Sci Rep 6: 23261 (2016)
- •Koyama S, Omura T, Yonezawa A, Imai S, Nakagawa S, Nakagawa T, Yano Y, Matsubara K: Gefitinib and erlotinib lead to phosphorylation of eukaryotic initiation factor 2Éø independent of epidermal growth factor receptor in A549 Cells. *PLOS ONE*, 10: e0136176 (2015)
- Nakagawa S, Omura T, Yonezawa A, Yano I, Nakagawa T, Matsubara K: Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury. Am J Physiol Renal Physiol, 307: F1404-F1411 (2014)

薬理ゲノミクス・ゲノム創薬科学

准教授: 平澤 明

研究概要

ゲノム創薬はゲノム情報を利用して新しい薬やより効果の高く副作用の少ない薬を開発する分野です。私たちは、細胞膜に存在して生体反応で重要な役割を果たしているG蛋白供役型受容体(GPCR)や、網羅的な遺伝子解析手法として脚光を浴びているマイクロアレイ技術、そしてゲノム情報などの情報を解析するバイオインフォマティクスを中心として研究を行っています。


GPCR ゲノム創薬において最も実績があり多くの研究 者・企業が取り組んでいる標的分子ファミリーがG蛋白 質共役型受容体(GPCR)を代表とする薬物受容体です。 ホルモンなどの生理活性物質の多くは、受容体に結合す ることにより細胞内に情報を伝達しています。中でもG 蛋白質と共役して情報伝達する受容体群がGPCRです。 GPCRは細胞膜を7回繰り返して貫通するという特徴的 な共通構造をもっています。これまでは作用する物質 (リガンド) が先に見つかっていて、次に対応する GPCRが同定されてきました。最近この特徴的な構造を 手掛かりにゲノムDNAやcDNAの配列解析から直接 GPCR遺伝子をin silicoで見出すことが可能になってき ています。しかしこれらの多くはリガンドが未知であり 「オーファン受容体」と呼ばれています。GPCRが関与 している生理現象の大部分が未開拓の領域といえます。 一方、GPCRは疾患と関連している場合も多いので、医 薬品の開発のための主要な標的の一つでした。市販の医 薬品で受容体を標的とする薬物は非常に多く、その対象 疾患の領域は中枢神経系、内分泌系、循環器、呼吸器、 泌尿器、消化器、生殖器など多岐にわたります。受容体 分子の細胞内移行に着目したスクリーニングシステムを 用いて、新規受容体GPR120の天然リガンドとして脂肪 酸を同定しました。さらにGPR120が食事性の脂肪酸刺 激によりGLP-1等のペプチドホルモンの分泌を促進し、 これを介してインスリン分泌、食欲の制御を行うことを 示しました。この結果は、GPR120が肥満、糖尿病、摂 食異常等の疾患に対して効果的な予防と治療の標的であ ることを示すとともに、当研究室のアプローチが、創薬 標的分子の迅速な同定と解析に有効であることを示して います。

マイクロアレイ(DNAチップ) ゲノム創薬において 最も重要なことの一つは、創薬ターゲットとする分子の 決定です。マイクロアレイ(DNAチップ)は種々の病 態に特異的な遺伝子発現パターン(プロファイル)を同 定し、医薬品開発のターゲットを迅速に発見することを 可能にします。たとえばゲノムワイドな遺伝子発現プロ ファイル解析法であるマイクロアレイDNAチップを用 いると、各種疾患動物モデルや細胞生物学現象における 体系的かつ網羅的な遺伝子発現解析を行うことができま す。また、生理、生化学、細胞生物学データを遺伝子変 動と関連して有効に活用できるデータベースの構築を行 い、生物学的検証を加えて疾患・治療関連遺伝子群を絞 り込み、これら候補遺伝子群の細胞生物学的機能解析、 それらを標的とする低分子化合物の選択ができるように なります。当研究室では遺伝子発現プロファイル・デー タベースの構築のため、遺伝子情報がまだ充実していな い動物モデルの各臓器別標準ライブラリーcDNAチップ を作製し、数種の疾患動物モデル動物における病態遺伝 子発現の解析と生理、生化学、組織学変化などの相関よ り、変動する発現遺伝子群を絞り込む手法を用いて研究 を行っています。

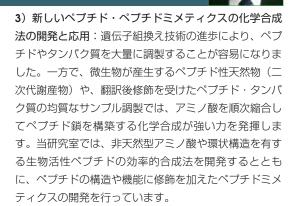
ファーマコゲノミクス ヒトゲノムの構造が明らかとな り、その弾みを受けて現在、世界の研究者の関心は構造 (塩基配列) からゲノムに記されている情報 (遺伝子の 機能)の読解(機能ゲノム科学functional genomics) へと既にポスト・ゲノム(シークエンス)時代へ突入し つつある。このヒトゲノム計画の影響を最も受けるもの は、ヒトの病気の原因解明、診断、治療といった医療分 野である。ヒトゲノム計画の成果により、診断から使用 する薬の製造までのすべての過程は大きく影響を受け、 近い将来には"ありふれた病気"に対しても個々の患者 の遺伝的体質に合わせた処方、治療計画がなされる、い わゆるテーラーメイド医療が提供されるであろう。この ゲノム情報、技術を基に患者各人に個別至適化されたテ-ラーメイド医療を現実化するため、薬理ゲノミクス (Pharmacogenomics) という新しいコンセプトが登 場した。また、このテーラーメイド医療-個別至適化し た薬物治療-を実用的にするには、遺伝子情報に合わせ た薬の品揃えが必要となるが、いわゆるゲノム情報から 薬を理論的に創る『ゲノム創薬』の戦略が、やはりヒト ゲノム情報解読により多くの製薬企業でますます加速化 されつつある。このように、ヒトゲノム構造解読の波及 効果として、ゲノム情報、ゲノムテクノロジーの進展は 大きなうねりとして基礎、臨床研究、更には医療を変貌 しつつある。当講座では薬理ゲノミクスを実践するべく、 具体的には網羅的遺伝子発現解析に基づく治療の個別至 適化を志向している。

最近遺伝子発現解析により細胞の種々の状態における 動的な遺伝子の働きを解析し、発現変化と病態、薬物応 答性を関連づけて解析することにより遺伝子機能を推測 し、創薬標的遺伝子の探索、薬物作用機構の解析、更に は作用、副作用を予測しようとする試みがなされつつあ る。高密度マイクロチップおよびマイクロアレイでは数 千の遺伝子の発現パターンを同時に探索出来るため、遺 伝子解析をパラレル(同時並行)に行うことができる。 このパラレル遺伝子解析により、正常および異常な遺伝 子発現パターンを明らかにでき、これまで不可能であっ た各種の複雑な生命現象(例えば、発生、分化の過程、 病態分子機構、ヒト病態動物モデルの評価、薬剤の効能、 特異性、毒性等)の相互ネットワーク解析に有用である。 この技術により、膨大な量のデータ(情報)が生成され、 この膨大な量のデータを包括的に考察し、意味のある物 を抽出する。その経済性、網羅性の点からマイクロアレ イ法は現在飛躍的にその普及性をのばしており、その応 用はヒト及びマウス等のゲノムプロジェクトより得られ つつある遺伝子情報と相まって、今後遺伝子機能解析の 最有力な技術となることが期待されている。我が国にお

いても本格的に トランスクリプ トーム解析がリ アリティーに向 かおうとしてい る現況である。

- •Takeuchi M, Hirasawa A, Hara T, Kimura I, Hirano T, Suzuki T, Miyata N, Awaji T, Ishiguro M, Tsujimoto G. FFA1-selective agonistic activity based on docking simulation using FFA1 and GPR120 homology models. Br J Pharmacol. 168(7): 1570-1583, 2013.
- Ichimura A et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 483(7389): 350-354, 2012.
- •Hirosawa A et al. Free fatty acids regulate gut incretin glucagons-like peptide-1 secretion through GPR120. Nat. Med. 11: 90-94, 2005.

ケモゲノミクス・薬品有機製造学


教 授:大野 浩章 准教授:大石 真也

研究概要

生命現象は、数多くの有機化合物の反応や平衡によって成り立っていて、これらは遺伝子情報により規定されています。病気とは生態の恒常性(ホメオスタシス)に何らかの異常が生じている状態ですが、病気の治療に使われる医薬品もほとんどの場合有機化合物です。従って、医薬品を創製したり適切に使用したりするためには、有機化学を深く理解しなくてはなりません。ケモゲノミクス・薬品有機製造学分野では、有機化学を基盤にして創薬を目指す以下の研究を推進しています。

1) 複雑な化学構造を有する生物活性化合物の合成と創薬展開: 最近、簡単に合成できる低分子化合物から医薬品を創る ことが難しくなっています。その理由の1つは、盛んに 行われてきた網羅的化合物合成と高速スクリーニングに よって、合成しやすい化合物を用いた創薬研究がやり尽 くされつつあることです。さらには、比較的治療しやす い疾患に対する良いくすりがすでに開発され、治療の難 しい疾患が残っていることにも関係があります。私たち は、既存の技術では合成が難しかった化合物を創薬研究 に用いることや、これまで機能調節が難しかった生体内 分子の相互作用を制御することが可能になれば、現状を 打破する糸口が得られると考えています。当研究室では その一環として、興味深い生物活性を有し、かつ作りに くい構造を有する有機化合物の合成研究と創薬展開を行 っています。最近では、複雑な環構造を有するアルカロ イドや、大環状ペプチドを標的とした合成研究を進めて います。

2) 複雑な化学構造を一挙に構築するための新反応の開発: 興味深い生物活性を持っている化合物であっても、構造が複雑すぎると創薬研究に用いることが困難です。これは、構造活性相関研究において関連化合物を多数合成したり、活性や物性を改善するプロセスに時間や労力がかかりすぎるからです。当研究室では、生物活性化合物に共通して存在する複雑な構造を、一度の反応で効率的に構築する新しい手法の開発を行っています。最近では、原子を無駄遣いしない反応に着目して、金やパラジウムのような遷移金属触媒を用いた最先端の反応開発研究を行っています。

4) Gタンパク共役型受容体リガンド・プローブの創製: Gタンパク共役型受容体は、さまざまな生理機能・病態と関連があることから、創薬標的として広く研究が行われてきました。当研究室では、抗HIV活性ペプチドの開発を通してケモカイン受容体拮抗剤の創製研究に取り組み、高活性拮抗剤を創製しました。また、このペプチドがある種の白血病に有効であることを共同研究により明らかにし、現在臨床試験が行われています。さらに、生殖生理に関わる性ホルモンの分泌調節をつかさどる神経ペプチド受容体に対するリガンドの創製にも取り組んでいます。こうしたリガンド創製研究により得られた知見に基づき、生体内の受容体局在や細胞内の受容体挙動を調べるためのプローブ分子を設計し、生体機能を調節するメカニズムの解明に向けた研究を行っています。

5) 化合物ライブラリーの構築と応用:医薬品の候補化合物となり得る新しい生物活性化合物を探索することは、医薬品開発の重要課題のひとつです。当研究室では、長年にわたりアルカロイドをはじめとする天然有機化合物やペプチドホルモンをはじめとする生体関連物質など、多種多様な有機化合物を化学合成してきました。また、これらを合成するための中間体・前駆体を含めると数万検体に及ぶ化合物のストックを保有しています。こうした市販化合物にない特徴的な化学構造を有する収集化合物群を医薬品開発研究のリソースとして有効活用することを目的として、化合物ライブラリーを構築し、学内外の研究機関との共同研究によりさまざまなスクリーニングを行っています。

- ●Ohno *et al.* Formal Total Synthesis of (±)-Strictamine Based on a Gold-Catalyzed Cyclization. *Org. Lett.*, **18**, 1670 (2016).
- Oishi *et al.* Development of Novel CXC Chemokine Receptor 7 (CXCR7) Ligands: Selectivity Switch from CXCR4 Antagonists with a Cyclic Pentapeptide Scaffold. *J. Med. Chem.*, **58**, 5218 (2015).
- Ohno et al. Gold-Catalyzed Cascade Cyclization of 2-Alkynyl-N-Propargylanilines via the Rearrangement of a Propargyl Group. Angew. Chem. Int. Ed., 54, 7862 (2015).
- Oishi et al. Development of Novel Neurokinin 3 Receptor (NK3R) Selective Agonists with Resistance to Proteolytic Degradation. J. Med. Chem., 57, 8646 (2014).

システムバイオロジー

教 授: 岡村均 准教授: 土居 雅夫 助 教: 山口 賀章

特定講師: Jean-Michel Fustin

研究概要

従来のライフサイエンスの手法で多くの要素が解明されてきましたが、それがどのようにして有機的な結合をしてシステムを構成しているのかは、ほとんど解明されていません。我々が取り上げるのは、遺伝子から細胞、個体に至るまで、実にさまざまな階層に驚くべき正確さで反映される、約24時間周期の生体リズムです。ここでは時は、時計遺伝子、時計細胞、体内時計、全身の細胞時計、というように多段階で伝達され、遺伝子情報をもとにして、生体が如何に正確にダイナミックなシステムを形成しているのかを解明するのには、実に優れた系です。我々は、この多層にわたる分子ネットワークシステムの作動原理の解明を通じて、時間を調律する手法や薬剤を開発します。

1) 時の遺伝子フィードバックループの解明

サーカディアン振動系を考えるに当たり、まず最初の 鍵になるのは時計遺伝子です。我々は、1997年に哺乳 類の時計遺伝子を発見したグループの一つです。

時計遺伝子は、自分自身の転写制御するフィードバックループを形成します。これがリズムを形成するコア・ループで、発振の中心となる振動子は、Per遺伝子群(Perl, Per2, Per3)です。我々は、このループの存在を、線維芽細胞由来の細胞系で証明し、時計遺伝子の振動が普遍的に起こっている現象であることを明らかにしました。

2) 細胞内での時の伝達システムの解明

コア・ループは細胞内の時計と言え、何万という蛋白質に時間の情報を与えます。事実、細胞の機能にとって重要な、幾千もの物質の遺伝子の転写振動を引き起こします。たとえば、細胞が分裂増殖するためのセルサイクルを構成する主要制御蛋白質にも、直接時間の情報を送っていることを明らかにしました。現在mRNAの化学修飾による新しい生物現象の解明に取り組んでいます。

3) 体内時計における時計細胞同士の時の調律

上に上げた遺伝子レベル・細胞レベルの時の生成は、数十兆にも及ぶ全身のほとんどの細胞で起こっています。しかし、このうち、脳の視交叉上核(SCN)の時計は特別で、ここで形成された時間は、全身に伝達されるのです。ここでは、時は約1万個の時計細胞で形成されます。細胞時計が、ばらばらでなく調和の取れた強力なリズムを形成するのかはきわめて不思議な現象で、我々はこの分子細胞機構を、シグナル伝達に関与するGPCRを始めとする受容体および細胞内シグナル伝達機構に着目して解明いたします。すでにこの検索で、SCNのシグナル伝達が時差形成に決定的な役割を果すことを見つけました。今後、GPCRに作用する化学物質を同定し、睡眠リズム異常に対する創薬を目指します。

4) 全身の細胞の時の調律

では、視交叉上核の時間シグナルがどのように全身の細胞時計に伝達されるのでしょうか?SCN核のシグナルは、周辺に有る自律神経、内分泌、睡眠覚醒・体温など、体内のホメオスタシスの中枢に時間情報を送り、これをコントロールします。我々は、交感神経系シグナルが副腎に至り、副腎皮質ステロイドという内分泌情報に転換されることを見つけました。この全身における、巧妙な時間伝達システムを解明いたします。

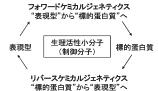
最近、増加しつつある、睡眠異常、うつ病、メタボリックシンドローム、発癌、高血圧症などは、すべてリズムと関係しています。時計システムの分子レベルの解明を通じて創薬を行い、生命のリズムに沿った21世紀の快適な生活の科学を提唱したいと考えています。

時計遺伝子プロモーターが活性化するとホタルLUCIFERASEが発現し光るマウス

生体リズムは、35億年前地球上に現れた生物が、地球の自転により起こる太陽エネルギーの 昼夜変化に適応するため獲得した基本形質であり、広くヒトを含む哺乳類にも認められる。 この生体リズムは遺伝子振動が行動(睡眠覚醒など)や生体機能(ホルモン分泌など)にま で反映する極めてユニークな系である。我々は時計遺伝子のクローニングからリズム生成の 分子レベルの解明まで常にこの分野の先頭を走ってきた。最近では、世界で初めて行動中の 動物の時計遺伝子転写を追跡したり、細胞時計の様子を観察することに成功した。時計が細 胞周期や代謝など、多くの細胞の基本的な現象の調節に関与していることも明らかにした。 今後、分子時計のシグナルが、細胞から個体レベルの如何なる機能に関与していくのか、そ の全貌を解明し、時を制御する薬剤を開発する。

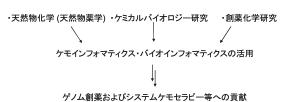
- Matsuo et al. Control mechanism of the circadian clock for timing of cell division. Science 302, 255, 2003.
- Doi et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nature Medicine, 16, 67, 2010.
- Doi et al. Circadian regulation of intracellular G-protein signaling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. *Nature Commun.* 2, 327, 2011.
- Fustin et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155, 793, 2013.
- Yamaguchi et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science, 342, 85, 2013.
- ■Doi et al. Gpr176 is a GZ-linked orphan G-protein·coupled receptor that sets the pace of circadian behavior, Nature Commun. 7,10583,2016

システムケモセラピー(制御分子学)


教 授:掛谷秀昭 准教授:服部明 助 教:西村慎一

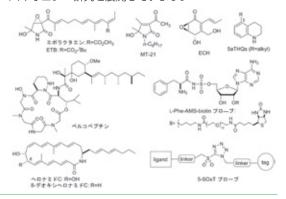
特定助教:石川文洋

研究概要


真核細胞の一生は、1個の受精卵から始まり様々な増 殖・分化・細胞死決定因子による厳密な制御のもとに 「生・死・分化」が決定されています。この厳密な調節 機構に異常が生じると、がん、心疾患、感染症、神経変 性疾患、免疫疾患、糖尿病などをはじめとした様々な多 因子疾患につながると考えられています。細胞の「生・ 死・分化」の調節機構の全貌を解明することは、生命科 学にとって究極の課題とも考えられます。そのためのア プローチとして、生理活性小分子(制御分子)を利用し たケミカルバイオロジー的アプローチは、分子遺伝学的 アプローチと相補的に、非常に強力かつ有意義なアプロ ーチです。ケミカルバイオロジー的アプローチの成功は、 標的蛋白質に作用する生理活性小分子の開拓に大きく依 存しています。このような背景のもと、システムケモセ ラピー(制御分子学)分野においては、天然物化学(天 然物薬学)・メディシナルケミストリー(創薬化学)を 機軸として、フォワードケミカルジェネティクスおよび リバースケミカルジェネティクスの双方向からの新規生 理活性小分子の開拓研究を行い、それらを利用して細胞 の「生・死・分化」の調節機構の解明研究に取組み、独 創性の高い先端的ケミカルバイオロジー研究を展開して

います。これまでに、 我々の研究成果を基 盤として、複数の新 規生理活性小分子が 生化学試薬として市 販され、創薬基盤研 究に貢献しています。

現在進行中の研究課題は下記の通りです。


- 1) 多因子疾患(がん、心疾患、感染症、神経変性疾患、 免疫疾患、糖尿病等)に対する次世代化学療法の開 発を指向した先端的ケミカルバイオロジー研究
- 2) 創薬リード化合物の開拓を指向した新規生理活性物質の天然物化学(天然物薬学)・メディシナルケミストリー(創薬化学)研究
- ケモインフォマティクス、バイオインフォマティクスを活用したシステムケモセラピー研究
- 4) 有用物質生産・創製のための遺伝子工学的研究(コンビナトリアル生合成研究等)

これまでに、細胞死(アポトーシス)誘導剤として、ETB, MT-21等の開発に成功しています。ETBおよびMT-21は、糸状菌が生産する新規生理活性物質エポラクタエンをリード化合物として開発されました。現在、MT-21は細胞レベルでチトクロームCの遊離を誘導するANT(adenine nucleotide translocase)阻害剤として、ETBは分子シャペロンの1つであるHsp60 (heat shock protein 60)阻害剤として広く使用されています。一方、細胞死(アポトーシス)抑制剤として、糸状菌が生産するECHを見出し、結合タンパク質としてDISC (deathinducing signaling complex)複合体内のprocapspase-8を同定しました。

近年、生体内の低酸素環境や細胞膜シグナルを標的と した創薬ケミカルバイオロジー研究も展開中です。低酸 素誘導因子(HIF; hypoxia-inducible factor)は、低酸素 環境におけるがん細胞の生存において中心的な役割を果 たしており、がん化学療法の標的として注目されていま す。我々は、放線菌が生産するverucopeptinをHIF機能 抑制物質として再発見し、絶対立体化学の解析研究、構 造活性相関研究、ならびに全合成研究を行っています。 また、in-house 合成化合物ライブラリー等を活用し、 HIF機能抑制剤のメディシナルケミストリー研究を行っ ています。生体膜シグナル制御物質の探索・開発研究に おいては、放線菌が生産するヘロナミド類や5-alkyl-1,2,3,4-tetrahydroquinolines (5aTHQs)を発見しまし た。ヘロナミド類は飽和炭化水素鎖を持つリン脂質に結 合することで抗真菌作用を示すことを明らかにしまし た。5aTHQsは2種類の微生物の複合培養によってのみ 生産される新規化合物群で、現在、生合成機構および活 性発現機構などの詳細を解析中です。

上記以外にも、小分子リガンド一受容体の迅速同定システム(5-SOxTプローブ法)の開発研究、さらには、天然資源、機能性分子プローブ、有用生合成酵素、脱ユビキチン化酵素等をキーワードにして、最先端ケミカルバイオロジー研究を展開しています。

- Sugiyama, R. et al. Disocovery and total synthesis of streptoaminals, antimicrobial (5,5)-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew. Chem. Int. Ed. DOI: 10.1002/anie.201604126, in press, 2016.
- Kakeya, H. Natural products-prompted chemical biology: Phenotypic screening and a new platform for target identification. Nat. Prod. Rep. 33, 648-654, 2016.
- •Goto, Y. et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun. 6, 6153, 2015.
- Ishikawa, F. et al. Accurate detection of adenylation domains in nonribosomal peptide synthetases by an enzyme-linked immunosorbent assay system using active site-directed probes for adenylation domains. ACS Chem. Biol. 10, 2816-2826, 2015.
- Sugiyama, R. et al. Structure and biological activity of 8-deoxyheronamide C from a marine-derived Streptomyces sp.: heronamides target saturated hydrocarbon chains in lipid membranes. J. Am. Chem. Soc. 136, 5209, 2014.
- Otsuki, S. et al. Chemical tagging of a drug target using 5-sulfonyl tetrazole. Bioorg. Med. Chem. Lett. 23, 1608, 2013.
 Fustin, JM. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell, 155, 703, 2013.
- Nishimura, S. et al. Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling. Nat. Chem. Biol. 6, 519, 2010.

統合ゲノミクス

教 授:緒方博之 助 教:Romain Blanc-Mathieu

統合ゲノミクス分野では、大規模生命データを基盤として、生物の多様性と生物機能の発現を理解し、そこから得られた知識を医療・創薬・環境保全へ応用することを目指しています。そのために、薬剤・代謝産物・ゲノム情報といった分子レベルのデータと、細胞・個体・環境レベルの知見を統合的に解析するためのバイオインフォマティクス技術を開発しています。現在は、次世代シークエンサーが産する大規模メタゲノムデータに着目し、ウイルスや微生物のゲノムの機能、薬剤・腸内細菌叢間の相互作用、微生物群集と地球環境の相互関係を対象として研究を進めています。

1) ウイルスのゲノム解析

様々な病気の病原体として知られるウイルスは、ゲノムも小さく、最適な自己増殖のために、極めて単純化された寄生体とみなされる傾向があります。しかし、ヘルペスウイルスや天然痘ウイルスなど比較的大きなウイルスは、おおよそ200個の遺伝子を保持します。さらに近年、その大きさで細胞性微生物に匹敵し、遺伝子を数百~2,500個以上も保持する巨大なウイルスが発見されています。こうした大型なものも含め、ウイルスの世界は極めて多様で、また、様々な感染戦略により宿主の防御システムを逃れ、宿主細胞をウイルス粒子の生産に向けてリプログラミングします。当研究室では、こうした多様なウイルスの遺伝子機能を明らかにし、ウイルスの生態系での役割・進化を理解するために、ウイルスの比較ゲノム解析を行い、解析を支援するためのバイオインフォマティクス技術の開発を進めています。

2) 微生物群集と環境の相互作用

腸内をはじめ生体内、そして、様々な自然環境で細菌 や真核微生物が重要な役割を果たしています。当研究室 では、腸内細菌や海洋プランクトン(真核微生物、細菌、 ウイルス等)がいかなるコミュニティーを形成し、その機能を発現しているかを探っています。種の多様性と遺伝子の多様性を特徴づけ、種間相互作用(寄生、共生、競合、捕食・被捕食関係)を理解し、微生物集団の機能、動態、そして進化が、周囲の環境といかに関連しているのかを解明することを目的としています。同時に、環境ゲノムデータをもとに、新規酵素や薬理活性を示す新規天然物を発見するための基礎研究を行っています。

3) 医科学と環境保全への応用を目指した化学・生命科 学情報の統合

基礎生命科学と創薬・医療・環境保全への応用を推進 するためのウェブリソースであるゲノムネット (http://www.genome.jp/) を開発し世界に配信して います。ゲノムネットでは、分子情報(医薬品の化学構 造、ゲノム・メタゲノム情報)、医薬知識(副作用や薬 剤のターゲットタンパク質情報)、環境情報を横断的に 検索することができます。京都大学で開発されているシ ステム生物学データベースKEGGをはじめ、世界中の主 要なデータベースにある遺伝子・タンパク質・酵素反 応・代謝化合物・医薬品・天然物・疾患・副作用など、 様々なコンテンツが収録され、最新のバイオインフォマ ティクス技術による統合的な検索が可能です。現在は、 全地球規模の海洋探査によって得られた大規模な海洋微 生物データの統合およびヒトをはじめとする各種生物種 のプロテームプロジェクトから得られたデータの統合を 進めています。同時に、抗原変異により免疫系を回避す る原生生物の抗原変異性の遺伝子ファミリーのデータを 整理し、そのメカニズムの解明を通じて臨床への応用を 目指しています(varDB, http://www.vardb.org/)。こ うした生命知識リソースを基盤として、多様な情報を統 計的手法により解析し、例えば、医薬品の副作用を予測 する手法の開発を行っています。

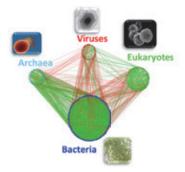


図1. 計算機によって予測された生物間相互作用

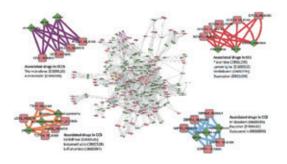


図2. 薬物間相互作用の予測

- Blanc-Mathieu and Ogata; DNA repair genes in the Megavirales pangenome. Curr. Opin. Microbiol., 31, 94-100, 2016.
- Mihara et al.; Linking virus genomes with host taxonomy. Viruses, 8, 66, 2016.
- •Lescot et al.; Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME J., 10, 1134-1146, 2016.
- Guidi et al.; Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532, 465-470, 2016.
- •Hingamp et al.; Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J., 7, 1778-1695, 2013.

分子設計情報

教 授:馬見塚 拓 助 教:Canh Hao Nguyen、山田 誠

研究概要

生命科学では、近年の実験技術の進歩やビッグサイエ ンスの潮流により様々な種類のデータが大量に生成さ れ、それらをデータベース化し共有する体制が世界規模 で整ってきました。一方、これらのデータが生命現象の 解明に十二分に利用されているとは言い難い状況にあり ます。特に、蓄積したデータから情報処理技術によりデ ータを解析する「バイオインフォマティクス」が必要で す。中でも、データに隠された、内在する有益な情報を 計算機により自動的に獲得する技術がひときわ重要でし ょう。このような技術の研究分野を計算機科学では「機 械学習(machine learning)」あるいは「データマイ ニング(data mining)」と呼んでいます。機械学習と は計算機がデータの特徴(すなわち、データに内在する 規則、パターン、仮説等)を自動的に学習することを指 し、データマイニングとは鉱山から貴重な宝石を掘ると いうmining(採掘する)という言葉になぞらえて、デ ータの山から有益な情報を得ることを指します。いずれ も統計科学と密接に関係します。さて、従来、これらの 分野で扱うデータは、構造化データと呼ばれるいわゆる 表(各事例を行、事例の各属性を列)データで、これに 対する解析技術はあまたと提案されてきました。一方、 生命科学で近年蓄積されるデータは多様で必ずしも表デ -タではありません。例えば、ゲノム配列、化合物の化 学構造式、信号伝達経路等、表で与えられないものが数 多くあります。このような非構造化データを表に変換し ようとすれば、生命科学にとって重要な情報が欠落する 可能性があります。そこで、非構造化データをそのまま 扱う機械学習およびデータマイニング技術の構築が非常 に重要です。このようなアプローチは生命現象の解明に 有益であるだけでなく、計算機科学においても新しい貢 献となる研究課題です。当分野では、上記のように、機 械学習・データマイニングを中心とした計算機科学(お よび統計科学)技術の新展開による生命科学および創薬 科学の発展への貢献を目指し研究遂行中です。以下、具 体的な研究課題の中から3つほどを取り上げ簡単に概説 します。

1) 構造化データと非構造化データの統合データマイ

ニング: 近年蓄積された遺伝子をはじめとする生体分子 相互の性質はグラフで表現されることがままあります。 例として、遺伝子相互作用ネットワーク、タンパク質相 互作用ネットワーク、代謝パスウェイなどが挙げられま す。一般的な言い方をすれば、これらは事例間の関係性 をグラフで表現しています。このような非構造化データ (グラフ) と構造化データを組み合わせ、両データの性 質を反映して事例をクラスタリングする(同じ性質毎に まとめる)手法を開発しています。具体的には、遺伝子 間の関係性を表現したグラフ(非構造化データ)と発現 による遺伝子の類似性を捉えることが可能なcDNAマイ クロアレイ(構造化データ)により遺伝子のクラスタリ ングを行い、遺伝子機能等をより正確に予測する手法で す。一例を下図に例示します。現在、グラフのモジュー ル性の高い場合に有効な手法を開発していますが、今後 はグラフの様々な性質を考慮した手法を開発することに より、生体分子の様々な関係性を示す各グラフに適した、 生体分子のクラスタリングが可能になるでしょう。

- 2) 木構造データからの学習: 非構造化データはグラフばかりではなく、糖鎖の二次元表現など木もあります。 木に対する新しい効率的な機械学習手法を考案し、実適用から糖鎖の各クラスのパターン発見と複数糖鎖のアライメントを実現し、今後は自動分類を目指しています。
- 3) 生命科学文献データからの学習:近年大規模に蓄積されている非構造化データの一つには、医学論文等の文献データも挙げられます。これら文献データから有効な知識を効率的に獲得する手法を開発しています。一例は、大規模な文献データの中で、与えられた文章(例えば、「狂牛病の遺伝子の機能は何か?」)に最も関係する文献を探索する情報検索と呼ばれる分野の手法です。他にも、同一文献内に同時に出現する生体分子の共起データから未知の関係性を発見する手法を構築しています。実際、この手法は特定の癌に関係する未知の低分子化合物や遺伝子を高い確度で提示することが示してきました。さらに、大量の文献をその内容により自動的にクラスタリングすることも文献データ処理の上で非常に重要であり、実際頑健で効率的手法を構築してきました。

左:構造化データのみからの遺伝子クラスタリング右:非構造化データをも加味したクラスタリング (各色は遺伝子の異なる機能を表現している。右図の色がよりまとまっており、非構造化データの使用が有効であることを示唆している。)

- ■Takigawa et al. Mining Significant Substructure Pairs for Interpreting Polypharmacology in Drug-Target Network. PLoS One, 6(2), e16999, 2011.
- Takigawa and Mamitsuka. Graph Mining: Procedure, Application to Drug Discovery and Recent Advance. Drug Discovery Today, 18(1-2), 50-57, 2013.
- Ding et al. Similarity-based Machine Learning Methods for Predicting Drug-target Interactions: A Brief Review. Briefings in Bioinformatics, 15(5), 737-747, 2014.

ナノバイオ医薬創成科学講座

客員教授:清水一治、嶋田裕、須藤哲央 講 師:武井義則

研究概要

(1) 背景と目的

最近の工学技術、特にナノテクノロジー・材料技術や 分析技術の発展により、これらを駆使するとゲノムやタンパク質の特に分子レベルの莫大な情報が獲得され、創 薬科学が大きく発展することが期待される。

本ナノバイオ医薬創成科学講座では、ナノバイオ技術 を臨床検体に適用し医薬の創成を目指す。

(2) 研究内容

臨床医と連携してDNAマイクロアレイ、高速シーケンサー等の先端分析技術を用いて、質の高い臨床検体と高いレベルの臨床情報を解析対象とすることにより、各種がん、特に食道がんの早期診断、テーラーメード医療、分子標的医薬の創成を目指す。具体的には、以下に示すような食道がんに対する抗体医薬創成を目指した研究を進めている。

①mRNA発現解析

現今の遺伝子診断は、単一遺伝子の発現、変異をマーカーとして診断していくものが殆どであるが、本講座では、食道がん、腎がん等のがん種において、多数の遺伝子のmRNA発現のパターンを総合して、がん患者の治療選択の指標としての、予後、化学・放射線療法感受性、遠隔転移を予測する方法を探索してきた。

②microRNAの機能解析

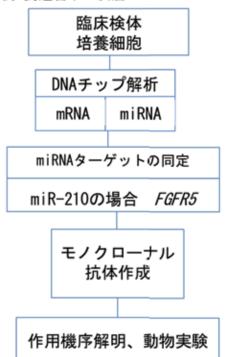
microRNAは、タンパク情報を持たない小分子RNAで、 遺伝子転写後の発現制御を行っている。

microRNAの発現パターンをマイクロアレイ技術で網羅的に解析することにより、正常細胞とがん細胞を比較して悪性度に関係するmicroRNAの同定とその機能解析等を通じて、microRNAのターゲットから創薬候補を見出すことが可能である。具体的には、食道がんにおいてがん部、非がん部のマイクロRNAに関しマイクロアレイの解析を行うと、miR-210が大きく変動していることを見出した。このマイクロRNAのターゲットとしてFGFR5に注目した。

③モノクローナル抗体作成

マイクロRNA解析より見出されたFGFR5について、このFGFR5の発現が高い患者は予後が悪いという臨床結果が得られた。一方、抗FGFR5ポリクローナル抗体には食道がん細胞増殖抑制活性があるものがある。そ

こで抗FGFR5モノクローナル抗体の作成を検討し増殖抑制活性のあるモノクローナル抗体を得た。


④作用機序解明

FGFR5ノックアウトがん細胞を作成した。今後これを 用いてFGFR5のがんへの寄与、抗FGFR5抗体の作用機 序を解明していく。

⑤動物実験

担がん動物に対する抗FGFR5抗体の作用をみる。

DNAチップ解析から創薬標的へ 例. 食道扁平上皮癌

- Y.Shimada et al. Expression analysis of fibroblast growth factor receptor-like 1 (FGFRL1) in esophageal squamous cell carcinoma. Esophagus 11 (1), 48-53, 2013
- Y.Shimada et al. Role of fibroblast growth factor receptors in esophageal squamous cell carcinoma. Esophagus 13 (1), 30-41, 2016

医薬産業政策学講座

教 授: 柿原 浩明 助 教: 田村 正興、和久津 尚彦、迫田さやか

研究概要

教授 柿原浩明、助教 田村正興、和久津尚彦、迫田 かおりの4名のスタッフで運宮されています。

柿原は静岡薬科大学中退後、京都府立医科大学、同大学院、京都大学経済学研究科を経て立命館大学経済学部教授を経て着任いたしました、消化器内視鏡学会専門医でもあります。田村は東京大学で経済学博士を取得し一橋大学を経て着任いたしました。和久津はニューヨーク州立大学パッフアロー校で経済学のPh.D.を取得し一橋大学、医療科学研究所を経て着任いたしました。迫田は同志社大学で経済学博士を取得し、着任いたしました。こののように、バラエティに富んだ優秀なメンバーが着任したことを誇りに思っております。

講座の特徴:2011年度国家予算において、国債償還、地方交付税交付金以外の一般歳出において社会保障関係費が初めて半分を超えた。高齢者の増加が著しいため、一人当たりでは高福祉とはいえないが、総額では国家予算を圧迫する額になってしまう。今後も高齢化は進展し、社会保障予算は増大するが、その割合ではGDPが増加しないため、歳出削減圧力がかなり増加していくことが予想される。そこで医療費・薬剤費の合理的なあり方を医療提供者側は提言していく必要がある。

日本においては医療費抑制策が長年続き、ジェネリック推進もその一環であり、その原因は何かを考えてみる必要がある。

1981年「増税なき財政再建」がスローガンの行政改 革が行われ、臨時行政調査会・土光敏夫会長は国民負担 率をピークでも50%以下に抑えるという、経済学的に あまり根拠のない目標を設定したことにある。また 1982年7月にまとめた「行政改革に関する第三次答申-基本答申」の中で、「社会保障」の「医療費適正化と医 療保険制度の合理化等」の項の「医療供給の合理化」の 2番目に「医療従事者について、将来の需給バランスを 見通しつつ、適切な養成に努める.特に、医師について は過剰を招かないよう合理的な医師養成計画を樹立す る」と提言した。現在医師不足となっているのは、これ を受けて同年9月に、医師数抑制が閣議決定され、1984 年5月に「将来の医師需給検討委員会」が設置され、国 立大学を中心に医学部定員を減少させ、新設を認めてこ なかったからである。これらはすべて医療費抑制政策の 結果である。

めざしの土光さんと国民に親しまれた、人格高邁な人物であり、電電公社、国鉄等の民営化も行い、それらは成功例として評価されている。しかしながら国民負担率に関して経済学的な考察があまりなされないまま、少子高齢化社会の先頭を走るようになり社会構造が一変したにもかかわらず、金科玉条のごとく死守してきたのが、日本の低医療費の最大の原因であると思われる。

それに加えて、行政改革に関する答申の医療版のような、当時の厚生省保険局長吉村仁による医療費亡国論が1983年に発表されたことなどが、日本が小さな政府を選択し、その結果として医療費を抑制してきた原因である。

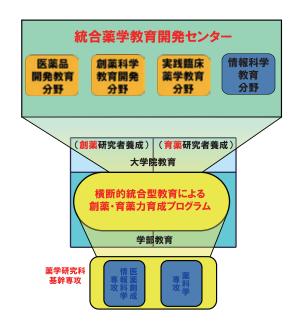
医療費亡国論が医療費を抑制してきたのではなく、あくまで政府による臨時行政調査会の行った答申が出発点

であり、また医療費亡国論もその答申に沿った論文である。厚生省の局長も政府・官僚組織の一構成員であり、その個人的意見に政府が従ったというのは逆であり、政府の方針に沿った医療版の論文を発表したと考える方が自然であり、また内容的にもそうである。

しかしながら吉村自身は慢性肝炎の病身にあり、身を賭して改革に当たり、当時としては誤りとはいえない面があったと思われる。何が間違っていたかといえば、時代や社会が変化すれば、それに応じて最適な解は変化するという当たり前のことが、その後に考え直されず、いつまでも金科玉条のごとく硬直的に考えられてきたということだと思われる。

以上が日本の医療費抑制策が続いた原因の考察とその 対策であるが、それを踏まえて、以下の問題について考 えてみたい。

近年ジェネリック推進が国策のようになっているが、 付加価値生産性を踏まえた経済全体に与える影響を検討 する必要があると思われる。日本においても、ジェネリ ック業界ではイスラエルのテバ系列が最大になり、イン ドの企業の傘下に入ったジェネリックメーカーや第一三 共もジェネリックではインドのランバクシーを買収し た。インドでもできることを行うということは、日本の 付加価値生産性がインドに近づいていくということであ り、ということは従業員の給料もインドに近づいていく ということである。このことを経済学では「要素価格均 等化の定理」また「ストルパー=サミュエルソンの定理」 ともいう。 従業員の給与がインドに近づいていった場 合、それをよしとするのかどうか。多くの人は耐え難い と思うであろう。また現状の賃金格差のままでは経済を 維持できないのは明白で、より高付加価値生産性の分野 に進出していくしかなく、その有望分野の一つが新薬の 製薬業である。


近未来では、インドや中国で新薬が開発され、信頼できる臨床治験が行われる可能性は低く、液晶や自動車に比べ比較優位は保たれており、日本の進む道ではないかと思われる。 また産業政策・産業育成は一般に思われているほど効果はなく、日本の強い分野であるゲームやアニメも産業育成されたわけではない。しかし製薬業については、安全性のための社会的規制が多く、できる限りの審査迅速化など、それをうまく運用することで産業育成できる可能性がある。以上のことを基本的方針として研究に当たっていくのがこの講座の特徴であると考える。

具体的な研究テーマとして

- 1. 医療費の増加と経済成長
- 高額医療と公的医療保険の役割 これらの研究課題に取り組みたいと考えております。

統合薬学教育開発センター

統合薬学教育開発センターは、文部科学省により選定された「横断的統合型教育による創薬・育薬力育成プログラム」(平成22-26年度)を実施するため、京都大学大学院薬学研究科の附属施設として2010年4月に設置された。本センターには、医薬品開発教育分野、創薬科学教育分野、実践臨床薬学分野の3専任分野が設置されている。別途、情報関係の教育を担当する情報科学教育分野も並置し、医薬創成情報科学専攻の教員2名が兼任している。

統合薬学教育開発センターの取り組み

1. 目的

医薬品開発は、創薬ターゲット探索、リード化合物の創成・最適化、有効性・安全性評価、臨床研究等、多岐に渡る一連のプロセスからなる。近年、従来の流れに沿って各プロセスを個別に進めるだけでは開発が困難な対象化合物が多く、新たにプロセス全体を俯瞰した開発が求められている。従ってこれからの創薬科学者には、個別の専門領域のスペシャリストの資質のみならず、医薬品開発プロセス全体を視野に分野横断的な知識、技能、態度を兼ね備えていることが不可欠となる。

京都大学薬学部・薬学研究科では、薬学における "創"と"療"の拠点形成を教育・研究の基本的理念 として掲げ、大学設置基準に基づき、学部教育においては、平成18年度に導入された高度な薬剤師教育を目 指す6年制教育制度と、創薬研究者を初めとする多様 な人材の養成を目的とする4年制教育制度を並置し、 各制度の学生が他方の制度のカリキュラムを履修して 相互に科目を取り合うことができる等、分野横断的な 本センターにおいては、これからの創薬に求められ る能力を育成するため、これまでの個別の専門領域の スペシャリストの資質育成教育に加え、医薬品開発を 俯瞰的に捉え患者に良質の薬物治療を提供するという 薬学の本質に関わり、統一的に必要とされる薬学総合 基礎教育を新規に展開することを目的とし、新薬学教 育制度下での各学科の枠を超えて、医薬品研究現場へ の参加・体験型学習及びモデル医薬品開発・医療応用 事業への参加を想定した問題解決型の演習・実習を中 心とした新たな教育カリキュラム「創薬・育薬力育成 プログラム」を構築してきた。その成果を高学年、大 学院教育で進展させることによって分野横断的な創 薬・育薬力を持った先導的創薬研究リーダーを育成す るための横断的統合型教育のプラットフォームを築 き、学士力を総合的に高める教育システムの構築を進 めている。

2. 概要

統合薬学教育開発センターでは、横断的統合型教育により創薬・育薬力を持った創薬・育薬研究リーダーを育成するため以下の3つの科目を実施している。

①「医薬品開発プロジェクト演習Ⅰ」および「医薬品 開発プロジェクト演習Ⅱ」

製薬企業において実際に開発に成功した代表的な医薬品を選定し、学生自らがその医薬品の仮想開発プロジェクトチームのメンバーとなって、探索研究から開発研究に至るまでのプロセスを展開していく、少人数グループ討論形式の演習を3~4年次に段階的に実施する。また、他学部、他大学教員や学外の専門家等による経営やマネジメント等に関する講義、演習を実施する。さらに、e-ラーニングシステムや薬学ナビゲーションシステムを活用し語学・IT教育も推進している。

②「統合型薬学演習」

創薬から医療まで網羅した4専攻設置という特徴を活用し、早期体験学習として1年次に各研究室の教員、大学院生の指導のもと、合宿研修を実施し、研究に対するモチベーションの向上及び目的意識の明確化を目指す。また、3年次に各分野における先端研究の現状を網羅的に紹介する特別説明会および製薬企業の見学を実施し、分野配属前に創薬・開発を意識した先端的な知識、態度を修得させる。

③「医療倫理実習」

1年次に本学医学部との連携により展開している医療ボランティア活動へ参加し、医療倫理やチーム医療の重要性を体験を通して学習する。また、医師、看護師、薬剤師の共通の医療上のテーマである医療過誤等についての理解を深めるため、それらについて講義と演習形式で学習する医療安全学を4年次に行う。

附属薬用植物園

薬用植物は、従来から伝統薬として、また重要な医薬品の原料として利用されてきました。近年、わが国では漢方治療が見直されて定着し、一方では、新規薬物開発などの視点から、植物が生産する様々な機能性を持った化合物に注目が集まるようになってきました。

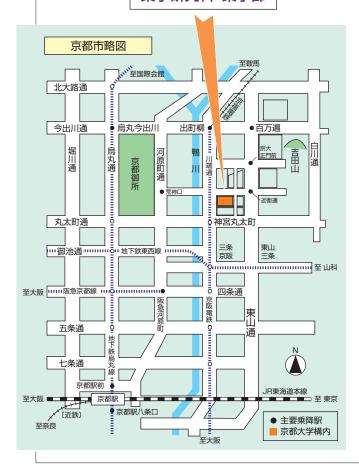
植物は、新規薬物開発のための多様かつ巨大な化合物プールであるとの認識をもとに、野生植物もまた潜在的有用資源であるとの認識が広まり、諸外国からの植物遺伝子資源の導入はますます困難となってきています。

本学の薬用植物園は、主に標本園(2,724㎡)、温室(215㎡)で構成されており、局方収載漢方薬原料植物などの重要薬用植物のほか、海外学術調査などで収集した貴重な薬用植物を栽培・管理し、学生の教育のみならず創薬科学の研究のために増殖・利用を図ってきました。

1) 標本園・樹木園:標本園は局方生薬原料植物、 民間薬原料植物、ハーブ類を中心に、また樹木園はキ ハダ、ニッケイ、サンシュユ、クチナシなど温帯性の 薬用樹木を、管理栽培しています。これらは、薬用植 物学の講義や創薬科学実習に利用されるとともに、日 本生薬学会と(財)薬剤師研修センターの共催による 「漢方薬・生薬認定薬剤師研修」の実習にも活用されています。

- 2) 温室: 熱帯産の重要薬用植物各種のほか、海外学術調査等で収集した、貴重な遺伝資源植物、例えば桂皮原植物 (Cinnamomum sp.)、乳香樹(Boswellia sp.)、インド長胡椒 (Piper longum)、ウコン類 (Curcuma sp.)、などの系統保存を行なっています。
- 3) 栽培圃場: 1980年代から、圃場を利用してシソ・エゴマに関する遺伝・育種学、遺伝生化学、系統分類学的研究が行われてきました。これらによって固定・育種された系統のほか、国内はもとより国外の調査研究で収集された系統もあり、現在ではその数は5,700を越え国内最大規模のコレクションとなっています。
- 4) さく葉標本・生薬標本:中近東、中央アジア、 東南アジアなどにおける海外学術調査で収集した、薬 用植物のさく葉標本はおよそ5,000点、生薬標本は 1,100点あり、研究・教育に活用されています。

元素分析センター


「有機微量元素分析総合研究施設(元素分析センター)」は元素分析の奨励および分析業務を広く一般に提供することを目的として、1954年(昭和29年)4月に設立されました。設立以来、本学学部・大学院・研究所だけでなく、他大学、研究機関及び企業からの委託元素分析に応じ、新物質の合成・化学構造解析に必要なデータを提供する分析センターとして研究支援業務を行っています。

現在は主に有機化合物中の炭素・水素・窒素・酸素・硫黄・塩素・臭素・ヨウ素・フッ素・リンの10元素についての元素分析を行っており、年間の測定検体数は約2000件です。CHN分析用の装置を4台、酸素分析用装置を1台、硫黄八口ゲン分析用装置を2台、リン分析用装置を1台、合計8台を管理しています。

薬学研究科·薬学部

市バス案内等・

主要鉄道駅	乗車バス停	市バス系統	市バス経路等	下車バス停		
京都駅 (JR·近鉄)	京都駅前	206系統	東山通 北大路ターミナル 行	「近衛通」		
		17系統	河原町通 銀閣寺錦林車庫 行	「荒神口」		
阪急河原町	四条河原町	201系統	祇園 百万遍 行			
		31系統	東山通 高野·岩倉 行	「近衛通」		
		3系統	百万遍 北白川仕伏町 行	「荒神口」		
		17系統	河原町通 銀閣寺錦林車庫 行			
地下鉄烏丸線 今出川	烏丸今出川	201系統	百万遍 祇園 行	「近衛通」		
地下鉄東西線東山	東山三条	206系統	東山通 北大路ターミナル 行	「近衛通」		
		201系統	百万遍 千本今出川 行			
		31系統	東山通 高野·岩倉 行			
京阪 神宮丸太町	出町柳方面出口から北東へ徒歩約10分					

京都大学大学院薬学研究科・薬学部概要平成29(2017)年 3月

編集·発行 京都大学大学院薬学研究科·薬学部

〒606-8501 京都市左京区吉田下阿達町46-29 TEL (075) 753-4510 (ダイヤルイン) FAX (075) 753-4502 http://www.pharm.kyoto-u.ac.jp