Publications


*Corresponding author, §equal contribution

§Inoue, H., §Takatsu, H., Hamamoto, A., Takayama, M., Nakabuchi, R., Muranaka, Y., Yagi, T., Nakayama, K., and *Shin, H.-W. (2021) THe interaction of ATP11C-b with ezrin contributes to its polaized localization. J. Cell Sci., 134 , jcs258523. DOI: 10.1242/jcs.258523.

§Okamoto, S., §Naito, T., Shigetomi, R., Kosugi, Y., Nakayama, K., Takatsu, H., and *Shin, H.-W. (2020) The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell, 31 , 2115-2124. DOI: 10.1091/mbc.E20-04-0225.

*Shin, H.-W.  and Takatsu, H. (2020) Phosphatidylserine exposure in living cells. Crit. Rev. Biochem. Mol. 55, 166-178. DOI: 10.1080/10409238.2020.1758624.

Tone, T., Nakayama, K., Takatsu, H., and *Shin, H.-W. (2020) ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum. FEBS Lett. 594  , 412-423. (Selected for the Issue Cover and Editor's Choice) DOI: 10.1002/1873-3468.13629.

§Takayama, M., §Takatsu, H., Hamamoto, A., Inoue, H., Naito, T., Nakayama, K., and *Shin, H.-W. (2019) The C-terminal cytoplasmic region of the ATP11C variant determines its localization at the polarized plasma membrane. J. Cell Sci. 232, jcs231720. DOI: 10.1242/jcs.231720.

§Roland, B.P., §Naito, T., Best, J.T., Arinaiz-Yepez, C., Takatsu, H., Yu, R.J., Shin, H.-W. and Graham, T.R. (2019) Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J. Biol. Chem. 294, 1794-1806. (Selected for Editor's Pick) DOI: 10.1074/jbc.RA118.005876.

*Shin, H.-W. and Takatsu, H. (2019) Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J. 33, 3087-3096. DOI: 10.1096/fj.201801873R.

Takada, N., Naito, T., Inoue, T., Nakayama, K., Takatsu, H., and *Shin, H.-W. (2018) Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 37, e97705. DOI: 10.15252/embj.201797705. Press release. Posted in EurekAlert!, Asian Scientist, Science Daily, Science Newsline, Phys.Org.

Takatsu, H., Takayama, M., Naito, T., Takada, N., Tsumagari, K., Ishihama, Y., Nakayama, K., and *Shin, H.-W. (2017) ATP11C, a phospholipid flippase, is endocytosed and downregulated by Ca2+-mediated protein kinase C (PKC) activation. Nat. Commun. 8, 1423. DOI: 10.1038/s41467-017-01338-1. Press release.

 

Tomaszowski, K., Hellmann, N., Ponath, V., Takatsu, H., Shin, H.-W., and Kaina, B. (2017) Uptake of glucose-conjugated MGMT inhibitors in cancer cells: role of flippases and type IV P-type ATPases. Sci. Rep. 7, 13925. DOI: 10.1038/s41598-017-14129-x

 

Tanaka, Y., Ono, N., Shima, T., Tanaka, G., Katoh, Y., Nakayama, K., Takatsu, H., and *Shin, H.-W. (2016) The phospholipid flippase ATP9A is required for recycling pathway from endosomes to the plasma membrane. Mol. Biol. Cell 27, 3883-3893. (Selected for Highlights) DOI: 10.1091/mbc.E16-08-0586

 

Miyano, R., Matsumoto, T., Takatsu, H., Nakayama, K., and *Shin, H.-W. (2016) Alteration of transbilayer phospholipid compositions is involved in cell adhesion, cell spreading, and focal adhesion formation. FEBS Lett. 590, 2138-2145. DOI: 10.1002/1873-3468.12247

 

Hanai, A., Ohgi, M., Yagi, C., Ueda, T., Shin, H.-W., and Nakayama, K. (2016) Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J. Biochem. 159, 201-208. DOI: 10.1093/mvv088

 

Takada, N., Takatsu, H., Miyano, R., Nakayama, K., and *Shin, H.-W. (2015) ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells. J. Lipid Res. 56, 2151-2157. Recommended by Faculty of 1000   DOI: 10.1194/jlr.M062547

 

Takashima, K., Saitoh, A., Funabashi, T., Hirose, S., Yagi, C., Nozaki, S., Sato, R., Shin, H.-W., and Nakayama, K. (2015) COPI-mediated retrieval of SCAP is critical for regulating lipogenesis under basal and sterol-deficient conditions. J. Cell Sci.128, 2805-2815.

 

Naito, T., Takatsu, H., Miyano, R., Takada, N., Nakayama, K., and *Shin, H.-W. (2015) Phospholipid flippase ATP10A translocates phosphatidylcholine and is invoved in plasma membrane dynamics. J. Biol. Chem. 290, 15004-15017. DOI: 10.1074/jbc.M115.655191

 

Kubo, K., Kobayashi, M., Nozaki, S., Yagi, C., Hatsuzawa, K., Katoh, Y., Shin, H.-W., Takahashi, S., and Nakayama, K. (2015) SNAP23/25 and VAMP2 mediate exocytic event of transferrin receptor-containing recycling vesicles. Biol. Open 4, 910-920.

 

Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and *Shin, H.-W. (2014) Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J. Biol. Chem. 289, 33543-33556. DOI: 10.1074/jbc.M114.593012

 

Nakai, W., Kondo, Y., Saitoh, A., Naito, T., Nakayama, K., and *Shin, H.-W. (2013) ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. Mol. Biol. Cell 16, 2570-2581.

 

Ueda, T., Hanai, A., Takei, T., Kubo, K., Ohgi, M., Sakagami, H., Takahashi, S., Shin, H.-W., and Nakayama, K. (2013) EFA6 activates Arf6 and participates in its targeting to the Flemming body during cytokinesis. FEBS Lett. 587, 1617-1623.

 

Takatsu, H., Katoh, Y., Ueda, T., Waguri, S., Murayama, T., Takahashi, S., Shin, H.-W., and Nakayama, K. (2013) Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes. Cell Struct. Funct. 38, 31-41

 

Kondo, Y., Hanai, A., Nakai, W., Katoh, Y., Nakayama, K., and *Shin, H.-W. (2012) ARF1 and ARF3 are required for the integrity of reycycling endosomes and the recycling pathway to the plasma membrane. Cell Struct. Funct. 37, 141-154

 

Nakamura, K., Man, Z., Xie, Y., Hanai, A., Makyio, H., Kawasaki, M., Kato, R., Shin, H.-W., Nakayama, K., and Wakatsuki, S. (2012) Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase. J. Biol. Chem.287, 25478-25489

 

Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H.-W., Katoh, Y., and Nakayama, K. (2012) Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci. 125, 4049-4057

 

Makyio, H., Ohgi, M., Takei, T., Takahashi, S., Takatsu, H., Katoh, Y., Hanai, A., Ueda, T., Kanaho, Y., Xie, Y., Shin, H.-W., Kamikubo, H., Kataoka, M., Kawasaki, M., Kato, R., Wakatsuki, S., and Nakayama, K. (2012) Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO J. 31, 2590-2603

 

*Shin, H.-W., Takatsu, H., and Nakayama, K. (2012) Mechanisms of membrane curvature generation in membrane traffic. Membranes. 2, 118-133. DOI: 10.3990/membranes2010118

 

Takatsu, H., Baba, K., Shima, T., Umino, H., Kato, U., Umeda, M., Nakayama, K., & *Shin, H.-W. (2011) ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50-independent manner. J. Biol. Chem.286, 38159-38167. DOI: 10.1074/jbc.M111.281006

 

Takashima, K., Saitoh, A., Hirose, S., Nakai, W., Kondo, Y., Takasu, Y., Kakeya, H., Shin, H.-W., and Nakayama, K. (2011) GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER transport involved in regulation of lipid homeostasis. Cell Struct. Funct. 36, 223-235

 

Takahashi, S., Takei, T., Koga, H., Takatsu, H., Shin, H.-W., and Nakayama, K. (2011) Distinct roles of Rab11 and Arf6 in the regulation of Rab11/FIP3/arfophilin-1 localization in mitotic cells. Genes Cells, 16, 938-950

 

Man, Z., Kondo, Y., Koga, H., Umino, H., Nakayama, K., & Shin, H.-W. (2011) Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J. Biol. Chem., 286, 11569-11578.

Yamamoto, H., Koga, H., Katoh, Y., Takahashi, S., Nakayama, K., & *Shin, H.-W. (2010) Functional crosstalk between Rab14 and Rab4 through a dual effector, RUFY1/Rabip4. Mol. Biol. Cell 21, 2746-2755. (Selected for Highlights) Recommended by Faculty of 1000

Saitoh, A., §Shin, H.-W., Yamada, A., Waguri, S., & Nakayama, K. (2009) Three homologous ArfGAPs participate in COPI-mediated transport. J. Biol.Chem., 284, 13948-13957.

Nishimoto-Morita, K., §Shin, H.-W., Mitsuhashi, H., Kitamura, M., Zhang, Q, Johannes, L., & Nakayama, K. (2009) Differential effects of depletion of ARL1 and ARFRP1 on membrane trafficking between the trans-Golgi network and endosomes. J. Biol. Chem., 284, 10583-10592.

Azuma, Y., Takada , M., Shin, H.-W., Kioka, N., Nakayama, K., & Ueda, K. (2009) Retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation. Genes Cells, 14, 191-204.

Ishizaki, R., §Shin, H.-W., Mitsuhashi, H. & Nakayama, K. (2008) Redundant Roles of BIG2 and BIG1, Guanine-nucleotide Exchange Factors for ARFs, in Membrane Traffic between the TGN and endosomes. Mol. Biol. Cell 19, 2650-2660.

Yanagida-Ishizaki, Y., Takei, T., Ishizaki, R., Imakagura, H., Takahashi, S., Shin, H.-W., Katoh, Y. & Nakayama, K. (2008) Receuitment of Tom1L1/Srcasm to endosomes and the midbody by Tsg101. Cell Struct. Funct. 33, 91-100

Shiba, T., Koga, H., Shin, H.-W., Kawasaki, M., Kato, R., Nakayama, K. & Wakatsuki, S. (2006) Structural basis for Rab11-dependent membrane recruitment of FIP3/Arfophilin-1. Proc. Natl. Acad. Sci. USA, 103, 15416-15421.

Ishizaki, R., Shin, H.-W., Iguchi-Ariga, S.M.M., Ariga, H., & Nakayama, K. AMY-1 (Associate of Myc-1) (2006) Localization to the trans-Golgi Network through Interacting with BIG2, a Guanine-Nucleotide Exchange Factor for ADP-Ribosylation Factors. Genes Cells 11, 949-959

Shin, H.-W., Kobayashi, H., Kitamura, M., Waguri, S., Suganuma, T., Uchiyama, Y., & Nakayama, K. (2005) ARFRP1 (ADP-ribosylation factor-related protein 1), a Golgi-localizing small GTPase, functions upstream of Arl1 and GRIP domain-containing proteins in membrane trafficking. J. Cell Sci. 118, 4039-4048

Shin, H.-W., Hayashi, M., Christoforidis, S., Lacas-Gervais, S., Wenk, M., Modregger, J., Uttenweiler-Joseph, S., Wilm, M., Nystuen, A., Frankel, W.N., Solimena, M., De Camilli, P., & Zerial, M. (2005) An Enzymatic Cascade of Rab5 Effectors Regulates Phosphoinositide Turnover in the Endocytic Pathway. J. Cell Biol. 170, 607-618

Shin, H.-W., Shinotsuka, C., & Nakayama, K., (2005) Expression of BIG2 and Analysis of its Function in Mammalian Cells. Methods Enzymol. 404, 206-215

Matsuya, S., Sakagami, H., Tohgo, A., Owada, Y., Shin, H.-W., Takeshima, H.,Nakayama, K., Kokubun, S., & Kondo, H. (2005) Cellular subcellular localization of EFA6C, a third member of the EFA6 family, in adult mouse Purkinje cells. J. Neurochem. 93, 674-685

Shin, H.-W., Morinaga, N., Noda, M., & Nakayama, K. (2004) BIG2, a Guanine Nucleotide Exchange Factor for ADP-Ribosylation Factors: Its Localization to Recycling Endosomes and Implication in the Endosome Integrity. Mol. Biol. Cell 15, 5283-5294

Shin, H.-W. & Nakayama, K. (2004) Dual control of membrane targeting by PtdIns(4)P and ARF. Trends Biochem. Sci. 29, 513-515

Shin, H.-W. & Nakayama, K. (2004) Guanine Nucleotide-Exchange Factors for Arf GTPases: Their Diverse Functions in Membrane Traffic. J.Biochem. 136, 761-767

Shiba, Y., Katoh, Y., Shiba, T., Yoshino, K., Takatsu, H., Kobayashi, H., Shin, H.-W., Wakatsuki, S., Nakayama, K. (2004) GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem., 279, 7105-7111

Defacque, H., Bos, E., Garvalov, B., Barret, C., Roy, C., Mangeat, P., Shin, H.-W., Rybin, V. & Griffiths, G. (2002) Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190-1202

Shiba, Y., Takatsu, H., Shin, H.-W. & Nakayama, K. (2002) -adaptin interacts directly with rabaptin-5 through its ear domain. J. Biochem. 131,327-336

Takatsu, H., Futatsumori, M., Yoshino, K., Yoshida, Y., Shin, H.-W. & Nakayama K. (2001) Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COP1 complex: analysis using yeast three-hybrid system. Biochem. Biophys. Res. Commun., 271, 719-725

Futatsumori, M., Kasai, K., Takatsu, H., Shin, H.-W. & Nakayama K. (2000) Identification and characterization of novel isoforms of COP I subunits. J. Biochem., 128, 793-801

Kasai, K., Shin, H.-W., Shinotsuka, C., Murakami, K. & Nakayama, K. (1999) Dynamin II is involved in endocytosis but not in the formation of transport vesicles from the trans-Golgi network. J. Biochem., 125, 780-789

Shin, H.-W., Takatsu, H., Mukai, H., Munekata, E., Murakami, K. & Nakayama, K. (1999) Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J. Biol. Chem., 274, 2780-2785

Takatsu, H., Sakurai, M., Shin, H.-W., Murakami, K. & Nakayama, K. (1998) Identification and characterization of novel clathrin adaptor-related proteins. J. Biol. Chem., 273, 24693-24700

Shin, H.-W., Shinotsuka, C., Torii, S., Murakami, K. & Nakayama, K. (1997) Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p-Dnm1p. J. Biochem., 122, 525-530

和文総説

*申惠媛, 高津宏之 (2018) 細胞膜ホスファチジルセリン-フリッパーゼの活性調節機構. 生化学, 90, 486-490

 

*申惠媛 (2018) 脂質二重層間のリン脂質の移動(フリップ‐フロップ)による細胞膜の変形.実験医学, 36, 2239-2242. カレントトピックス.

 

申惠媛,中山和久 (2015) 特集 細胞シグナル操作法:I. 分子から見たシグナル操作法:2.Gタンパク質:Rab/Arf. 生体の科学, 66 (5), 406-407.

 

*申惠媛, 満智秋、中山和久 (2012) ゴルジ体以降の小胞輸送における低分子量GTPaseとBARドメインタンパク質の役割. 生化学, 84, 785-790

 

中山和久,申惠媛 (2008) Arfファミリーの低分子量 GTPaseのメンブレントラフィックにおける役割.蛋白質核酸酵素, 53, 2058-2064.

申惠媛,中山和久 (2006) ARFによるメンブレントラフィックの調節.細胞工学, 25, 1253-1257.

中村暢宏、吉村信一郎、申惠媛、中山和久(2003)小胞融合の選択性と小胞繋留機構:ゴルジ体を中心として. 実験医学, 21, 1947-1953.

 

著書

 

レ-ニンジャーの新生化学:生化学と分子生物学の基本原理(第7版)(2019) 中山和久編集 広川書店 共訳 第11章担当 

 

*申惠媛、中山和久 (2016) Arfファミリーによるメンブレントラフィックの調節.Dojin BioScience Series 24 メンブレントラフィック 福田光則・吉森保編 化学同人 pp. 114-129.

 

レ-ニンジャーの新生化学:生化学と分子生物学の基本原理(第6版)(2015) 中山和久編集 広川書店 共訳 第11章担当 

 

プロッパー細胞生物学:細胞の基本原理を学ぶ(第1版)(2013) 中山和久監訳 化学同人 共訳 第4章,第13章担当

 

中山和久、中村暢宏、申惠媛 (2003) タンパク質の輸送と細胞内局在. わかる実験医学シリーズ タンパク質がわかる 竹縄忠臣編 羊土社 pp. 56-65.